18 research outputs found

    Assessing mathematical problem solving using comparative judgement

    Get PDF
    There is an increasing demand from employers and universities for school leavers to be able to apply their mathematical knowledge to problem solving in varied and unfamiliar contexts. These aspects are however neglected in most examinations of mathematics and, consequentially, in classroom teaching. One barrier to the inclusion of mathematical problem solving in assessment is that the skills involved are difficult to define and assess objectively. We present two studies that test a method called comparative judgement (CJ) that might be well suited to assessing mathematical problem solving. CJ is an alternative to traditional scoring that is based on collective expert judgements of students’ work rather than item-by-item scoring schemes. In Study 1 we used CJ to assess traditional mathematics tests and found it performed validly and reliably. In Study 2 we used CJ to assess mathematical problem-solving tasks and again found it performed validly and reliably. We discuss the implications of the results for further research and the implications of CJ for the design of mathematical problem-solving tasks

    The visual analogue WOMAC 3.0 scale - internal validity and responsiveness of the VAS version

    Get PDF
    Background: Many people suffer with Osteoarthritis (OA) and subsequent morbidity. Therefore, measuring outcome associated with OA is important. The Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC) has been a widely used patient reported outcome in OA. However, there is relatively little evidence to support the use of the Visual Analogue Scale (VAS) version of the scale. We aimed to explore the internal validity and responsiveness of this VAS version of the WOMAC. Methods: Patients with chronic hip or knee pain of mechanical origin, waiting for a hip or knee joint replacement completed the WOMAC as part of a study to investigate the effects of acupuncture and placebo controls. Validity was tested using factor analysis and Rasch analysis, and responsiveness using standardised response means. Results: Two hundred and twenty one patients (mean age 66.8, SD 8.29, 58% female) were recruited. Factor and Rasch analysis confirmed unidimensional Pain and Physical Functioning scales, capable of transformation to interval scaling and invariant over time. Some Differential Item Functioning (DIF) was observed, but this cancelled out at the test level. The Stiffness scale fitted the Rasch model but adjustments for DIF could not be made due to the shortness of the scale. Using the interval transformed data, Standardised Response Means were smaller than when using the raw, ordinal data. Conclusions: The WOMAC Pain and Physical Functioning subscales satisfied unidimensionality and ordinal scaling tests, and the ability to transform to an interval scale. Some Differential Item Functioning was observed, but this cancelled out at the test level and, by doing so, at the same time removed the disturbance of unidimensionality. The scaling characteristics of sets of items which use VAS require further analysis, as it would appear that they can lead to spurious levels of responsiveness and scale compression because they exaggerate the distortion of the ordinal scale
    corecore