2,984 research outputs found

    Deep-space navigation with differenced data types. Part 3: An expanded information content and sensitivity analysis

    Get PDF
    An approximate six-parameter analytic model for Earth-based differential range measurements is presented and is used to derive a representative analytic approximation for differenced Doppler measurements. The analytical models are tasked to investigate the ability of these data types to estimate spacecraft geocentric angular motion, Deep Space Network station oscillator (clock/frequency) offsets, and signal-path calibration errors over a period of a few days, in the presence of systematic station location and transmission media calibration errors. Quantitative results indicate that a few differenced Doppler plus ranging passes yield angular position estimates with a precision on the order of 0.1 to 0.4 micro-rad, and angular rate precision on the order of 10 to 25 x 10(exp -12) rad/sec, assuming no a priori information on the coordinate parameters. Sensitivity analyses suggest that troposphere zenith delay calibration error is the dominant systematic error source in most of the tracking scenarios investigated; as expected, the differenced Doppler data were found to be much more sensitive to troposphere calibration errors than differenced range. By comparison, results computed using wideband and narrowband (delta) VLBI under similar circumstances yielded angular precisions of 0.07 to 0.4 micro-rad, and angular rate precisions of 0.5 to 1.0 x 10(exp -12) rad/sec

    Application of heat pipes to spacecraft thermal control problems

    Get PDF
    Application of heat pipes to spacecraft thermal control problem

    Orbit-determination performance of Doppler data for interplanetary cruise trajectories. Part 1: Error analysis methodology

    Get PDF
    An error covariance analysis methodology is used to investigate different weighting schemes for two-way (coherent) Doppler data in the presence of transmission-media and observing-platform calibration errors. The analysis focuses on orbit-determination performance in the interplanetary cruise phase of deep-space missions. Analytical models for the Doppler observable and for transmission-media and observing-platform calibration errors are presented, drawn primarily from previous work. Previously published analytical models were improved upon by the following: (1) considering the effects of errors in the calibration of radio signal propagation through the troposphere and ionosphere as well as station-location errors; (2) modelling the spacecraft state transition matrix using a more accurate piecewise-linear approximation to represent the evolution of the spacecraft trajectory; and (3) incorporating Doppler data weighting functions that are functions of elevation angle, which reduce the sensitivity of the estimated spacecraft trajectory to troposphere and ionosphere calibration errors. The analysis is motivated by the need to develop suitable weighting functions for two-way Doppler data acquired at 8.4 GHz (X-band) and 32 GHz (Ka-band). This weighting is likely to be different from that in the weighting functions currently in use; the current functions were constructed originally for use with 2.3 GHz (S-band) Doppler data, which are affected much more strongly by the ionosphere than are the higher frequency data

    Precision X-band radio Doppler and ranging navigation: Mars Observer interplanetary cruise scenario

    Get PDF
    This article describes an error covariance analysis based on a Mars Observer mission scenario; the study was performed to establish the navigation performance that can potentially be achieved in a demonstration of precision two-way X-band (8.4-GHz) Doppler and ranging with the Mars Observer spacecraft planned for next year, and to evaluate the sensitivity of the predicted performance to variations in ground system error modeling assumptions. Orbit determination error statistics computed for a 182-day Doppler and ranging data arc predicted Mars approach orbit determination accuracies of about 0.45 micro-rad in an angular sense, using a conservative ground system error model as a baseline. When less-conservative error model assumptions were employed, it was found that orbit determination accuracies of 0.19 to 0.30 micro-rad could be obtained; the level of accuracy of the assumed Mars ephemeris is about 0.11 micro-rad. In comparison, Doppler-only performance with the baseline error model was predicted to be about 1.30 to 1.51 micro-rad, although it was found that when improved station location accuracies and Global Positioning System-based tropospheric calibration accuracies were assumed, accuracies of 0.44 to 0.52 micro-rad were predicted. In the Doppler plus ranging cases, the results were relatively insensitive to variations in ranging system and station delay calibration uncertainties of a few meters and tropospheric zenith delay calibration uncertainties of a few centimeters

    Single-shot electro-optic sampling of coherent transition radiation at the A0 Photoinjector

    Full text link
    Future collider applications and present high-gradient laser plasma wakefield accelerators operating with picosecond bunch durations place a higher demand on the time resolution of bunch distribution diagnostics. This demand has led to significant advancements in the field of electro-optic sampling over the past ten years. These methods allow the probing of diagnostic light such as coherent transition radiation or the bunch wakefields with sub-picosecond time resolution. Potential applications in shot-to-shot, non-interceptive diagnostics continue to be pursued for live beam monitoring of collider and pump-probe experiments. Related to our developing work with electro-optic imaging, we present results on single-shot electro-optic sampling of the coherent transition radiation from bunches generated at the A0 photoinjector.Comment: 3 p

    Synchroscan streak camera imaging at a 15-MeV photoinjector with emittance exchange

    Full text link
    At the Fermilab A0 photoinjector facility, bunch-length measurements of the laser micropulse and the e-beam micropulse have been done in the past with a fast single-sweep module of the Hamamatsu C5680 streak camera with an intrinsic shot-to-shot trigger jitter of 10-20ps. We have upgraded the camera system with the synchroscan module tuned to 81.25MHz to provide synchronous summing capability with less than 1.5ps FWHM trigger jitter and a phase-locked delay box to provide phase stability of ~1ps over 10s of minutes. These steps allowed us to measure both the UV laser pulse train at 263nm and the e-beam via optical transition radiation (OTR). Due to the low electron beam energies and OTR signals, we typically summed over 50 micropulses with 0.25-1nC per micropulse. The phase-locked delay box allowed us to assess chromatic temporal effects and instigated another upgrade to an all-mirror input optics barrel. In addition, we added a slow sweep horizontal deflection plug-in unit to provide dual-sweep capability for the streak camera. We report on a series of measurements made during the commissioning of these upgrades including bunch-length and phase effects using the emittance exchange beamline and simultaneous imaging of a UV drive laser component, OTR, and the 800nm diagnostics laser.Comment: 26 p
    • …
    corecore