444 research outputs found

    Development of fuel cell electrodes, Electrode improvement and life testing, tasks 1 and 3 Final report, 30 Jun. 1966 - 30 Apr. 1968

    Get PDF
    Volt-ampere characteristics improvement and life testing of electrodes for hydrogen oxygen fuel cell

    17O NMR study of q=0 spin excitations in a nearly ideal S=1/2 1D Heisenberg antiferromagnet, Sr2CuO3, up to 800 K

    Full text link
    We used 17O NMR to probe the uniform (wavevector q=0) electron spin excitations up to 800 K in Sr2CuO3 and separate the q=0 from the q=\pm\pi/a staggered components. Our results support the logarithmic decrease of the uniform spin susceptibility below T ~ 0.015J, where J=2200 K. From measurement of the dynamical spin susceptibility for q=0 by the spin-lattice relaxation rate 1/T_{1}, we demonstrate that the q=0 mode of spin transport is ballistic at the T=0 limit, but has a diffusion-like contribution at finite temperatures even for T << J.Comment: Submitted to Phys. Rev. Lett. 4 pages, 4 figure

    63Cu NQR evidence of dimensional crossover to anisotropic 2d regime in S= 1/2 three-leg ladder Sr2Cu3O5

    Full text link
    We probed spin-spin correlations up to 725 K with 63Cu NQR in the S= 1/2 three-leg ladder Sr2Cu3O5. We present experimental evidence that below 300 K, weak inter-ladder coupling causes dimensional crossover of the spin-spin correlation length \xi from quasi-1d (\xi ~ 1/T) to anisotropic 2d regime (\xi \~ exp[2\pi\rho_{s}/T], where 2\pi\rho_{s} = 290 +/- 30 K is the effective spin stiffness). This is the first experimental verification of the renormalized classical behavior of the anisotropic non-linear sigma model in 2d, which has been recently proposed for the striped phase in high T_{c} cuprates.Comment: 4 pages, 3 figure

    Nuclear spin relaxation rates in two-leg spin ladders

    Full text link
    Using the transfer-matrix DMRG method, we study the nuclear spin relaxation rate 1/T_1 in the two-leg s=1/2 ladder as function of the inter-chain (J_{\perp}) and intra-chain (J_{|}) couplings. In particular, we separate the q_y=0 and \pi contributions and show that the later contribute significantly to the copper relaxation rate ^{63}(1/T_1) in the experimentally relevant coupling and temperature range. We compare our results to both theoretical predictions and experimental measures on ladder materials.Comment: Few modifications from the previous version 4 pages, 5 figures, accepted for publication in PR

    Critical dynamics of a spin-5/2 2D isotropic antiferromagnet

    Full text link
    We report a neutron scattering study of the dynamic spin correlations in Rb2_2MnF4_4, a two-dimensional spin-5/2 antiferromagnet. By tuning an external magnetic field to the value for the spin-flop line, we reduce the effective spin anisotropy to essentially zero, thereby obtaining a nearly ideal two-dimensional isotropic antiferromagnet. From the shape of the quasielastic peak as a function of temperature, we demonstrate dynamic scaling for this system and find a value for the dynamical exponent zz. We compare these results to theoretical predictions for the dynamic behavior of the two-dimensional Heisenberg model, in which deviations from z=1z=1 provide a measure of the corrections to scaling.Comment: 5 pages, 4 figures. Submitted to Physical Review B, Rapid Communication

    Mammals from Lower California

    Get PDF
    p. 181-202 ; 24 cm.Includes bibliographical references
    corecore