63 research outputs found
Distribution and metabolism of antibodies and macromolecules in tumor tissue
Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Chemical Engineering, 2008.Vita.Includes bibliographical references.Tumor targeting drugs that selectively treat cancerous tissue are promising agents for lowering the morbidity and mortality of cancer. Within this field, antibody treatments for cancer are currently being developed for both imaging and therapeutic applications. A major limitation with this class of drugs is the poor distribution and low uptake in tumor tissue. Poor distribution leaves some cells completely devoid of treatment, while others experience marginally toxic concentrations that could foster drug resistance. The low overall uptake in vascularized tumors constrains the therapeutic index and lowers signal to noise ratios for imaging applications. Since antibody therapies are currently used to treat both bulk tumors and residual disease, an understanding of the limitations in targeting prevascular metastases and vascularized tumors is required. In order to circumvent the current limitations with antibody therapies, the underlying causes must first be determined. In this thesis, the various steps in tumor localization of antibodies are analyzed in order to determine which steps are limiting uptake and distribution. Mathematical models are developed that indicate the distance antibodies and other binding macromolecules will penetrate into tumors and micrometastases. These models can also estimate the maximum uptake and time course of antibody concentration in tumors. The experimental distribution of a CEA binding antibody is measured in tumor spheroids and a mouse xenograft system to validate the model predictions. Using dimensional analysis of the fundamental transport rates that occur in tumors and micrometastases, two main groups determine the distance antibodies will penetrate in tumor tissue.(cont.) The clearance modulus indicates whether antibody persistence in the blood is sufficient to allow the drug to reach all cells in the micrometastasis or vascularized tumor. The Thiele modulus, defined for antibody transport in tumors, relates the internalization and catabolism of bound antibodies on cancer cells to the maximum distance the antibodies will reach in the tissue. These groups are related to the overall time course and maximum uptake in tumors, indicating when all cells will be targeted, and what factors determine this limit. These models can aid in experimental design, data interpretation, and strategies to improve uptake.by Greg M. Thurber.Ph.D
Multicolor Fluorescent Intravital Live Microscopy (FILM) for Surgical Tumor Resection in a Mouse Xenograft Model
Background: Complete surgical resection of neoplasia remains one of the most efficient tumor therapies. However, malignant cell clusters are often left behind during surgery due to the inability to visualize and differentiate them against host tissue. Here we establish the feasibility of multicolor fluorescent intravital live microscopy (FILM) where multiple cellular and/or unique tissue compartments are stained simultaneously and imaged in real time. Methodology/Principal Findings: Theoretical simulations of imaging probe localization were carried out for three agents with specificity for cancer cells, stromal host response, or vascular perfusion. This transport analysis gave insight into the probe pharmacokinetics and tissue distribution, facilitating the experimental design and allowing predictions to be made about the localization of the probes in other animal models and in the clinic. The imaging probes were administered systemically at optimal time points based on the simulations, and the multicolor FILM images obtained in vivo were then compared to conventional pathological sections. Our data show the feasibility of real time in vivo pathology at cellular resolution and molecular specificity with excellent agreement between intravital and traditional in vitro immunohistochemistry. Conclusions/Significance: Multicolor FILM is an accurate method for identifying malignant tissue and cells in vivo. The imaging probes distributed in a manner similar to predictions based on transport principles, and these models can be used to design future probes and experiments. FILM can provide critical real time feedback and should be a useful tool for mor
Multichannel Imaging to Quantify Four Classes of Pharmacokinetic Distribution in Tumors
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/108598/1/jps24086.pd
Tumor Drug Penetration Measurements Could Be the Neglected Piece of the Personalized Cancer Treatment Puzzle
Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/150514/1/cpt1211.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/150514/2/cpt1211_am.pd
Recommended from our members
Biodiversity on the Rocks : Macrofauna Inhabiting Authigenic Carbonate at Costa Rica Methane Seeps
Carbonate communities:The activity of anaerobic methane oxidizing microbes facilitates precipitation of vast quantities of authigenic carbonate at methane seeps. Here we demonstrate the significant role of carbonate rocks in promoting diversity by providing unique habitat and food resources for macrofaunal assemblages at seeps on the Costa Rica margin (400–1850 m). The attendant fauna is surprisingly similar to that in rocky intertidal shores, with numerous grazing gastropods (limpets and snails) as dominant taxa. However, the community feeds upon seep-associated microbes. Macrofaunal density, composition, and diversity on carbonates vary as a function of seepage activity, biogenic habitat and location. The macrofaunal community of carbonates at non-seeping (inactive) sites is strongly related to the hydrography (depth, temperature, O2) of overlying water, whereas the fauna at sites of active seepage is not. Densities are highest on active rocks from tubeworm bushes and mussel beds, particularly at the Mound 12 location (1000 m). Species diversity is higher on rocks exposed to active seepage, with multiple species of gastropods and polychaetes dominant, while crustaceans, cnidarians, and ophiuroids were better represented on rocks at inactive sites. Macro-infauna (larger than 0.3 mm) from tube cores taken in nearby seep sediments at comparable depths exhibited densities similar to those on carbonate rocks, but had lower diversity and different taxonomic composition. Seep sediments had higher densities of ampharetid, dorvilleid, hesionid, cirratulid and lacydoniid polychaetes, whereas carbonates had more gastropods, as well as syllid, chrysopetalid and polynoid polychaetes. Stable isotope signatures and metrics: The stable isotope signatures of carbonates were heterogeneous, as were the food sources and nutrition used by the animals. Carbonate δ13Cinorg values (mean = -26.98‰) ranged from -53.3‰to +10.0‰, and were significantly heavier than carbonate δ13Corg (mean = -33.83‰), which ranged from -74.4‰to -20.6‰. Invertebrates on carbonates had average δ13C (per rock) = -31.0‰ (range -18.5‰to -46.5‰) and δ15N = 5.7‰(range -4.5‰to +13.4‰). Average δ13C values did not differ between active and inactive sites; carbonate fauna from both settings depend on chemosynthesis-based nutrition. Community metrics reflecting trophic diversity (SEAc, total Hull Area, ranges of δ13C and δ15N) and species packing (mean distance to centroid, nearest neighbor distance) also did not vary as a function of seepage activity or site. However, distinct isotopic signatures were observed among related, co-occurring species of gastropods and polychaetes, reflecting intense microbial resource partitioning. Overall, the substrate and nutritional heterogeneity introduced by authigenic seep carbonates act to promote diverse, uniquely adapted assemblages, even after seepage ceases. The macrofauna in these ecosystems remain largely overlooked in most surveys, but are major contributors to biodiversity of chemosynthetic ecosystems and the deep sea in general
A Systems Approach for Tumor Pharmacokinetics
Recent advances in genome inspired target discovery, small molecule screens, development of biological and nanotechnology have led to the introduction of a myriad of new differently sized agents into the clinic. The differences in small and large molecule delivery are becoming increasingly important in combination therapies as well as the use of drugs that modify the physiology of tumors such as anti-angiogenic treatment. The complexity of targeting has led to the development of mathematical models to facilitate understanding, but unfortunately, these studies are often only applicable to a particular molecule, making pharmacokinetic comparisons difficult. Here we develop and describe a framework for categorizing primary pharmacokinetics of drugs in tumors. For modeling purposes, we define drugs not by their mechanism of action but rather their rate-limiting step of delivery. Our simulations account for variations in perfusion, vascularization, interstitial transport, and non-linear local binding and metabolism. Based on a comparison of the fundamental rates determining uptake, drugs were classified into four categories depending on whether uptake is limited by blood flow, extravasation, interstitial diffusion, or local binding and metabolism. Simulations comparing small molecule versus macromolecular drugs show a sharp difference in distribution, which has implications for multi-drug therapies. The tissue-level distribution differs widely in tumors for small molecules versus macromolecular biologic drugs, and this should be considered in the design of agents and treatments. An example using antibodies in mouse xenografts illustrates the different in vivo behavior. This type of transport analysis can be used to aid in model development, experimental data analysis, and imaging and therapeutic agent design.National Institutes of Health (U.S.) (grant T32 CA079443
A mechanistic compartmental model for total antibody uptake in tumors
Antibodies are under development to treat a variety of cancers, such as lymphomas, colon, and breast cancer. A major limitation to greater efficacy for this class of drugs is poor distribution in vivo. Localization of antibodies occurs slowly, often in insufficient therapeutic amounts, and distributes heterogeneously throughout the tumor. While the microdistribution around individual vessels is important for many therapies, the total amount of antibody localized in the tumor is paramount for many applications such as imaging, determining the therapeutic index with antibody drug conjugates, and dosing in radioimmunotherapy. With imaging and pretargeted therapeutic strategies, the time course of uptake is critical in determining when to take an image or deliver a secondary reagent. We present here a simple mechanistic model of antibody uptake and retention that captures the major rates that determine the time course of antibody concentration within a tumor including dose, affinity, plasma clearance, target expression, internalization, permeability, and vascularization. Since many of the parameters are known or can be estimated in vitro, this model can approximate the time course of antibody concentration in tumors to aid in experimental design, data interpretation, and strategies to improve localization
Practical Guide for Quantification of In Vivo Degradation Rates for Therapeutic Proteins with Single-Cell Resolution Using Fluorescence Ratio Imaging
Many tools for studying the pharmacokinetics of biologics lack single-cell resolution to quantify the heterogeneous tissue distribution and subsequent therapeutic degradation in vivo. This protocol describes a dual-labeling technique using two near-infrared dyes with widely differing residualization rates to efficiently quantify in vivo therapeutic protein distribution and degradation rates at the single cell level (number of proteins/cell) via ex vivo flow cytometry and histology. Examples are shown for four biologics with varying rates of receptor internalization and degradation and a secondary dye pair for use in systems with lower receptor expression. Organ biodistribution, tissue-level confocal microscopy, and cellular-level flow cytometry were used to image the multi-scale distribution of these agents in tumor xenograft mouse models. The single-cell measurements reveal highly heterogeneous delivery, and degradation results show the delay between peak tumor uptake and maximum protein degradation. This approach has broad applicability in tracking the tissue and cellular distribution of protein therapeutics for drug development and dose determination
A Helix-Stabilizing Linker Improves Subcutaneous Bioavailability of a Helical Peptide Independent of Linker Lipophilicity
Stabilized
peptides address several limitations to peptide-based
imaging agents and therapeutics such as poor stability and low affinity
due to conformational flexibility. There is also active research in
developing these compounds for intracellular drug targeting, and significant
efforts have been invested to determine the effects of helix stabilization
on intracellular delivery. However, much less is known about the impact
on other pharmacokinetic parameters such as plasma clearance and bioavailability.
We investigated the effect of different fluorescent helix-stabilizing
linkers with varying lipophilicity on subcutaneous (sc) bioavailability
using the glucagon-like peptide-1 (GLP-1) receptor ligand exendin
as a model system. The stabilized peptides showed significantly higher
protease resistance and increased bioavailability independent of linker
hydrophilicity, and all subcutaneously delivered conjugates were able
to successfully target the islets of Langerhans with high specificity.
The lipophilic peptide variants had slower absorption and plasma clearance
than their respective hydrophilic conjugates, and the absolute bioavailability
was also lower likely due to the longer residence times in the skin.
Their ease and efficiency make double-click helix stabilization chemistries
a useful tool for increasing
the bioavailability of peptide therapeutics, many of which suffer
from rapid in vivo protease degradation. Helix stabilization using
linkers of varying lipophilicity can further control sc absorption
and clearance rates to customize plasma pharmacokinetics
- …