61 research outputs found

    A High-Yield Synthesis of Chalcopyrite CuInS\u3csub\u3e2\u3c/sub\u3e Nanoparticles with Exceptional Size Control

    Get PDF
    We report high-yield and efficient size-controlled syntheses of Chalcopyrite CuInS2 nanoparticles by decomposing molecular single source precursors (SSPs) via microwave irradiation in the presence of 1,2-ethanedithiol at reaction temperatures as low as 100◦C and times as short as 30 minutes. The nanoparticles sizes were 1.8nm to 10.8 nm as reaction temperatures were varied from 100◦C to 200◦C with the bandgaps from 2.71 eV to 1.28 eV with good size control and high yields (64%–95%). The resulting nanoparticles were analyzed by XRD, UV-Vis, ICP-OES, XPS, SEM, EDS, and HRTEM. Titration studies by 1H NMR using SSP 1 with 1,2-ethanedithiol and benzyl mercaptan were conducted to elucidate the formation of Chalcopyrite CuInS2 nanoparticles

    Size, Surface Structure, and Doping Effects on Ferromagnetism in SnO\u3csub\u3e2\u3c/sub\u3e

    Get PDF
    The effects of crystallite size, surface structure, and dopants on the magnetic properties of semiconducting oxides are highly controversial. In this work, Fe:SnO2 nanoparticles were prepared by four wet-chemical methods, with Fe concentration varying from 0% to 20%. Analysis confirmed pure single-phase cassiterite with a crystallite size of 2.6 ± 0.1 nm that decreased with increasing. Fe% doped substitutionally as Fe3+. Pure SnO2 showed highly reproducible weak magnetization that varied significantly with synthesis method. Interestingly, doping SnO2 with Fe \u3c 2.5% produced enhanced magnetic moments in all syntheses; the maximum of 1.6 × 10−4 µB/Fe ion at 0.1% Fe doping was much larger than the 2.6 × 10−6 µB/Fe ion of pure Fe oxide nanoparticles synthesized under similar conditions. At Fe ≥ 2.5%, the magnetic moment was significantly reduced. This work shows that (1) pure SnO2 can produce an intrinsic ferromagnetic behavior that varies with differences in surface structure, (2) very low Fe doping results in high magnetic moments, (3) higher Fe doping reduces magnetic moment and destroys ferromagnetism, and (4) there is an interesting correlation between changes in magnetic moment, bandgap, and lattice parameters. These results support the possibility that the observed ferromagnetism in SnO2 might be influenced by modification of the electronic structure by dopant, size, and surface structure

    Fluctuant Magnetism in Metal Oxide Nanocrystals Capped with Surfactants

    Get PDF
    We demonstrate experimentally that magnetism in ZnO, TiO2, CeO2, andSnO2 nanocrystals (NCs) has a fluctuant nature that varies with capping surfactant type and concentration. By developing a forced hydrolysis approach with additional postprocessing for the synthesis and surfactant capping of these NCs, we effectively avoid the influence of size, shape, and magnetic impurities on the magnetic behavior of NCs, thus revealing the systematic influence of the capping surfactants on the NC magnetism. The x-ray photoelectron spectroscopy results and theoretical calculations clearly show that the magnetism fluctuation with surfactant concentration can be attributed to the periodic variation of spins, which arises from the concentration-dependent electron transfer from surfactants to NCs. Our results not only explain the previously reported seemingly irregular magnetism induced by capping surfactants but also provide an effective approach to tune or optimize the NC magnetism

    Unusual Crystallite Growth and Modification of Ferromagnetism Due to Aging in Pure and Doped Zno Nanoparticles

    Get PDF
    We report the unusual growth of pure and Fe-doped ZnO nanoparticles prepared by forced hydrolysis and the weakening of ferromagnetism due to aging in ambient conditions. More than four dozen nanoparticle samples in the size range of 4–20 nm were studied over 1 to 4 years. The as-prepared samples had significant changes in their crystallite sizes and magnetization as they aged in ambient conditions. Detailed studies using x ray diffraction and transmission electron microscopy (TEM) demonstrated that the crystallite size increased by as much as 1.4 times. Lattice parameters and strain also showed interesting changes. Magnetometry studies of Zn1−xFexO with x = 0–0.2 showed ferromagnetism at room temperature; however, keeping the samples in ambient conditions for one year resulted in modifications in the crystallite size and magnetization. For the Zn0.95Fe0.05O sample, the size changed from 7.9 nm to 9.0 nm, while the magnetization decreased from 1×10–3emu/g (memu/g) to 0.2 memu/g. Both magnetic and structural changes due to aging varied with the environment in which they were stored, indicating that these changes are related to the aging conditions

    Tuning the Bandgap and Cytotoxicity of ZnO by Tailoring the Nanostructures

    Get PDF
    Tuning the bandgap and cytotoxicity of ZnO nanoparticles (NPs) is very important, not only for customizing their optoelectronic and biomedical applications, but also for their cytotoxicity assay and safe usage. A unique soft-template of polyvinylpyrrolidone has been developed here to realize a rapid room-temperature neutral synthesis of ZnO with controlled nanostructures for tuning the bandgap and cytotoxicity of ZnO. By simply changing the reagent stoichiometry and the soft-template shape, high-purity ZnO rods, tripods, tubes, and unique T-like tubes with tunable size, surface composition/charge, bandgap, and cytotoxicity are obtained. It has been revealed that the ZnO bandgap can be remarkably reduced by introducing the surface nonstoichiometry; and the ZnO-induced cytotoxicity can be tuned by the size, shape, surface charge/composition, and bandgap of ZnO NPs at different degrees. Significantly, both the photochemistry reaction and the reactive oxygen species induced by ZnO NPs are not necessary for the ZnO-induced cytotoxicity

    Transition Metal Dopants Essential for Producing Ferromagnetism in Metal Oxide Nanoparticles

    Get PDF
    Recent claims that ferromagnetism can be produced in nanoparticles of metal oxides without the presence of transition metal dopants have been challenged in this work by investigating 62 high quality well-characterized nanoparticle samples of both undoped and Fe doped (0-10% Fe) ZnO. The undoped ZnO nanoparticles showed zero or negligible magnetization, without any dependence on the nanoparticle size. However, chemically synthesized Zn1-xFexO nanoparticles showed clear ferromagnetism, varying systematically with Fe concentration. Furthermore, the magnetic properties of Zn1-xFexO nanoparticles showed strong dependence on the reaction media used to prepare the samples. The zeta potentials of the Zn1-xFexO nanoparticles prepared using different reaction media were significantly different, indicating strong differences in the surface structure. Electron paramagnetic resonance studies indicate that the difference in the ferromagnetic properties of Zn1-xFexO nanoparticles with different surface structures originates from differences in the fraction of the doped Fe ions that participate in ferromagnetic resonance

    Magnetism of ZnO Nanoparticles: Dependence on Crystallite Size and Surfactant Coating

    Get PDF
    Many recent reports on magnetism in otherwise nonmagnetic oxides have demonstrated that nanoparticle size, surfactant coating, or doping with magnetic ions produces room-temperature ferromagnetism. Specifically, ZnO has been argued to be a room-temperature ferromagnet through all three of these methods in various experimental studies. For this reason, we have prepared a series of 1% Fe doped ZnO nanoparticle samples using a single forced hydrolysis co-precipitation synthesis method from the same precursors, while varying size (6 – 15 nm) and surface coating concentration to study the combined effects of these two parameters. Size was controlled by modifying the water concentration. Surfactant coating was adjusted by varying the concentration of poly acrylic acid (PAA) in solution. Samples were characterized by x-ray diffraction, transmission electron microscopy, x-ray photoelectron spectroscopy, optical absorptance spectroscopy, and magnetometry. No clear systematic effect on magnetization was observed as a function of surfactant coating, while evidence for a direct dependence of magnetization on the crystallite size is apparent

    A High-Yield Synthesis of Chalcopyrite CuIn S

    Get PDF
    We report high-yield and efficient size-controlled syntheses of Chalcopyrite CuInS2 nanoparticles by decomposing molecular single source precursors (SSPs) via microwave irradiation in the presence of 1,2-ethanedithiol at reaction temperatures as low as 100°C and times as short as 30 minutes. The nanoparticles sizes were 1.8 nm to 10.8 nm as reaction temperatures were varied from 100°C to 200°C with the bandgaps from 2.71 eV to 1.28 eV with good size control and high yields (64%–95%). The resulting nanoparticles were analyzed by XRD, UV-Vis, ICP-OES, XPS, SEM, EDS, and HRTEM. Titration studies by 1H NMR using SSP 1 with 1,2-ethanedithiol and benzyl mercaptan were conducted to elucidate the formation of Chalcopyrite CuInS2 nanoparticles
    • …
    corecore