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Abstract 

Many recent reports on magnetism in otherwise nonmagnetic oxides have demonstrated that 

nanoparticle size, surfactant coating, or doping with magnetic ions produces room-temperature 

ferromagnetism.  Specifically, ZnO has been argued to be a room-temperature ferromagnet 

through all three of these methods in various experimental studies.  For this reason, we have 

prepared a series of 1% Fe doped ZnO nanoparticle samples using a single forced hydrolysis 

co-precipitation synthesis method from the same precursors, while varying size (6 – 15 nm) 

and surface coating concentration to study the combined effects of these two parameters.  Size 

was controlled by modifying the water concentration.  Surfactant coating was adjusted by 

varying the concentration of poly acrylic acid (PAA) in solution.  Samples were characterized 

by x-ray diffraction, transmission electron microscopy, x-ray photoelectron spectroscopy, 

optical absorptance spectroscopy, and magnetometry.  No clear systematic effect on 

magnetization was observed as a function of surfactant coating, while evidence for a direct 

dependence of magnetization on the crystallite size is apparent. 

Introduction 

Over the last decade, many theoretical and experimental reports have been published regarding room temperature 

ferromagnetic semiconducting materials [1-11].  More recently, nanoparticles have received attention with articles 

showing pure oxides [12-19] or oxides coated with thiols or amines [20-22] to display ferromagnetic behavior at 

room temperature.  However, there is a mixture of techniques employed to produce the particles which could result 

in changes in stoichiometry, morphology and/or structure of the nanoparticles that may affect the observed magnetic 

behavior.  For this reason, we have synthesized a series of Fe doped ZnO nanoparticles using a single chemical 

method to study the combined effects of crystallite size, surfactant coating and dopant concentration.  We have 

previously reported on the influence of Fe dopant concentration on the magnetism of ZnO nanoparticles, prepared at 

a single size (6.8 nm) and without surfactant coating.[23]  This work now focuses on the variation of the magnetic 

properties of 1% Fe doped ZnO as a function of crystallite size and surfactant coating concentration.  A fixed Fe 

dopant concentration of 1% is chosen for this work because this is well below the solubility limit of Fe in ZnO, 

reducing the possibility of secondary or impurity phase formation.  A total of 36 nanoparticle samples of 

Zn0.99Fe0.01O are studied here to investigate their magnetic properties as a function of crystallite size in the 6 to 17 

nm range and coating with poly acrylic acid (PAA) surfactant in the 0 to 10 mg/mL range. 

Experimental 
 

Fe doped ZnO nanoparticles with dopant concentrations in the 0 to 15% range were synthesized following a 

previously reported forced hydrolysis procedure.[23]   To coat the samples with a surfactant, poly acrylic acid 

(PAA), a portion of each sample was dispersed in 1 mM of NaCl solution, to which solutions of 0.25 mg/mL or 10 

mg/mL PAA solution in 1 mM NaCl was added.  These concentrations were chosen to produce differing amounts of 

PAA coverage.  Crystallite structure and size were characterized using a Philips X’Pert MPD diffractometer using a 

Cu Kα wavelength of 1.5418 Å.   X-ray diffraction (XRD) was performed on loose powders mounted horizontally 

and smoothed using a glass slide.  Transmission electron microscopy (TEM) was performed to investigate primary 

particle size and the effects of the PAA coating on secondary particle size.  X-ray photoelectron spectroscopy (XPS) 

measurements were performed on powders that were hand-pressed into In foil using a Physical Electronics 

Versaprobe.  Samples were irradiated with a 100 W Al Kα x-ray beam rastered over a 1.4 x 0.1 mm area.  Charging 

of the insulating powders was minimized using low energy electrons and Ar
+
 ions.  The binding energy scale of high 
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resolution spectra was shifted referencing the Zn 2p3/2 peak of ZnO at 1021.9 eV[24].  Optical absorption spectra 

were collected using a Cary 5000 spectrophotometer.  Samples were dispersed in nanopure water at a concentration 

of approximately 70 µg/mL in a quartz cuvette prior to being placed into the spectrophotometer. Magnetic 

measurements were performed on a LakeShore 7404 vibrating sample magnetometer (VSM).  For these 

measurements, samples were packed into a clear plastic straw and mounted vertically to the sample rod. 

Results and Discussion 

Representative XRD patterns, shown in Fig. 1a, demonstrate the control of the synthesis method over particle size.  

Samples coated with PAA show significantly more noise than uncoated samples.    Sample sizes from XRD were 

also slightly smaller than the average from TEM.  As an example, TEM images from a  5% Fe doped ZnO sample, 

shown in Figs. 1b and 1c, which have been coated in 0 and 0.25 mg/mL PAA solution respectively, show primary 

particle sizes of 10.5 +/- 2 nm while for the same sample the crystallite size from XRD was around 8 nm.  The inset 

of Fig. 1a shows the size distribution.  The nanocrystals tend to agglomerate as larger clusters, with a size of 

approximately 82 nm and this does not appear to depend on the concentration of PAA used to coat the samples. 

XPS spectra of the Fe 3p region were recorded from Zn0.95Fe0.05O and are shown in Fig. 2a.  The peak position of 

the uncoated ZnO nanoparticles at 55.7 eV is similar to that reported for hematite, suggesting the Fe ions are in the 

3+ state [25].   If Fe
3+

 substitutes for Zn
2+

, the smaller ionic size of Fe
3+

 should result in a contraction of the lattice 

and/or reconfiguration of the oxygen stoichiometry for charge balancing.  The concentration of carbon on the 

surface of coated particles increases with increasing PAA concentration, which is expected due to the surface 

sensitivity of XPS and the carbon content of PAA.  The Fe 3p binding energy seems to move towards a lower value 

with the increasing PAA coating.  Since XPS is inherently surface sensitive, typically to the first few atomic layers, 

this may indicate a reduction of the surface Fe ions as a result of PAA attachment. 

Optical absorbance spectra were collected from varying size Fe doped ZnO at 5% focusing on the absorption peak 

of ZnO (See Fig. 2b) to demonstrate the size effect on optical and electrical properties.  As expected, the peak blue-

shifts slightly as the particle size decreases[26, 27].  This is illustrated in Fig. 2c showing the inverse squared 

dependence of absorption peak on crystallite size.  The PAA coating did not appear to have a systematic effect on 

the absorption peak. 

Representative M vs. H curves, and their corresponding low-field regions, are shown in Fig. 3a.  It can be seen that 

there is a very weak hysteresis present, which has been observed in other nanoparticle studies of magnetism [14, 15, 

18, 28].  For Zn0.99Fe0.01O, there does appear to be an increase in saturation magnetization Ms as the particle size 

decreases, suggesting that the surface to mass ratio and thus the surface itself plays an important role in the magnetic 

behavior of these particles (See Fig. 3b).   No significant variation of the magnetic properties is observed when the 

surfactant concentration was varied in the 0 to 10 mg/mL range.   The three lines plotting the variation of the 

saturation magnetizations of  Zn0.99Fe0.01O samples as a function of crystallite size for three different surfactant 

concentrations (0, 0.25 and 10 mg/mL) more or less overlap (Figure 3b), suggesting that the PAA coating is having 

no effect on the magnetization of Zn0.99Fe0.01O.     

Conclusions 

Doping ZnO nanoparticles with 1% Fe ions produces magnetism, in agreement with our previous reports [23, 29]. In 

this work, we demonstrate strong evidence that this magnetism varies with crystallite size. Saturation magnetization 

steadily increases with decreasing size or increasing surface area.  No appreciable effect is distinguishable when the 

PAA surfactant concentration was varied, although more work is needed to study the possible effects of coating 

concentration when using other surfactants.   Recently, Straumal et al.[30] have demonstrated that the observed 

ferromagnetic behavior of doped ZnO nanocrystals may be a grain boundary effect which exists in both pure and 

doped ZnO.  If so, the increase in available surface area with the decreasing particle sizes would cause a higher ratio 

of grain boundaries to grain volume, thus explaining the resulting relationship between crystallite size and 

magnetization shown in Fig. 3c.  Furthermore, the grain boundary properties combined with the lack of effect from 

PAA coating on particle coalescence demonstrated by the constant average agglomerate size across samples could 

be the reason why there was also a lack of change in magnetization with PAA concentration.  It should also be 

pointed out that the adsorption of ZnO at the grain boundaries is higher than free surfaces, allowing for increased 

solubility limits[31], and so the intereaction between particles at their interface may be competing with the PAA 

coating effect resulting in little difference in the overall magnetization when using PAA.   No impurity phases were 
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detected with XRD or evidence of other elements or states with XPS, so the observed magnetization seems to be of 

intrinsic origin.  The size dependence observed for the 1%  Fe doped ZnO samples further support the intrinsic 

nature of ferromagnetism in ZnO nanoparticles. 
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