24 research outputs found

    Genetic versus Non-Genetic Regulation of miR-103, miR-143 and miR-483-3p Expression in Adipose Tissue and Their Metabolic Implications-A Twin Study.

    Get PDF
    Murine models suggest that the microRNAs miR-103 and miR-143 may play central roles in the regulation of subcutaneous adipose tissue (SAT) and development of type 2 diabetes (T2D). The microRNA miR-483-3p may reduce adipose tissue expandability and cause ectopic lipid accumulation, insulin resistance and T2D. We aimed to explore the genetic and non-genetic factors that regulate these microRNAs in human SAT, and to investigate their impact on metabolism in humans. Levels of miR-103, miR-143 and miR-483-3p were measured in SAT biopsies from 244 elderly monozygotic and dizygotic twins using real-time PCR. Heritability estimates were calculated and multiple regression analyses were performed to study associations between these microRNAs and measures of metabolism, as well as between these microRNAs and possible regulating factors. We found that increased BMI was associated with increased miR-103 expression levels. In addition, the miR-103 levels were positively associated with 2 h plasma glucose levels and hemoglobin A1c independently of BMI. Heritability estimates for all three microRNAs were low. In conclusion, the expression levels of miR-103, miR-143 and miR-483-3p in adipose tissue are primarily influenced by non-genetic factors, and miR-103 may be involved in the development of adiposity and control of glucose metabolism in humans

    Low birthweight is associated with a higher incidence of type 2 diabetes over two decades independent of adult BMI and genetic predisposition

    Get PDF
    Aims/hypothesis: Low birthweight is a risk factor for type 2 diabetes. Most previous studies are based on cross-sectional prevalence data, not designed to study the timing of onset of type 2 diabetes in relation to birthweight. We aimed to examine associations of birthweight with age-specific incidence rate of type 2 diabetes in middle-aged to older adults over two decades. Methods: Adults aged 30–60 years enrolled in the Danish Inter99 cohort in 1999–2001 (baseline examination), with information on birthweight from original birth records from 1939–1971 and without diabetes at baseline, were eligible. Birth records were linked with individual-level data on age at diabetes diagnosis and key covariates. Incidence rates of type 2 diabetes as a function of age, sex and birthweight were modelled using Poisson regression, adjusting for prematurity status at birth, parity, polygenic scores for birthweight and type 2 diabetes, maternal and paternal diabetes history, socioeconomic status and adult BMI. Results: In 4590 participants there were 492 incident type 2 diabetes cases during a mean follow-up of 19 years. Type 2 diabetes incidence rate increased with age, was higher in male participants, and decreased with increasing birthweight (incidence rate ratio [95% CI per 1 kg increase in birthweight] 0.60 [0.48, 0.75]). The inverse association of birthweight with type 2 diabetes incidence was statistically significant across all models and in sensitivity analysis. Conclusions/interpretation: A lower birthweight was associated with increased risk of developing type 2 diabetes independent of adult BMI and genetic risk of type 2 diabetes and birthweight

    A novel splice-affecting HNF1A variant with large population impact on diabetes in Greenland

    Get PDF
    Background: The genetic disease architecture of Inuit includes a large number of common high-impact variants. Identification of such variants contributes to our understanding of the genetic aetiology of diseases and improves global equity in genomic personalised medicine. We aimed to identify and characterise novel variants in genes associated with Maturity Onset Diabetes of the Young (MODY) in the Greenlandic population. Methods: Using combined data from Greenlandic population cohorts of 4497 individuals, including 448 whole genome sequenced individuals, we screened 14 known MODY genes for previously identified and novel variants. We functionally characterised an identified novel variant and assessed its association with diabetes prevalence and cardiometabolic traits and population impact. Findings: We identified a novel variant in the known MODY gene HNF1A with an allele frequency of 1.9% in the Greenlandic Inuit and absent elsewhere. Functional assays indicate that it prevents normal splicing of the gene. The variant caused lower 30-min insulin (β = −232 pmol/L, βSD = −0.695, P = 4.43 × 10−4) and higher 30-min glucose (β = 1.20 mmol/L, βSD = 0.441, P = 0.0271) during an oral glucose tolerance test. Furthermore, the variant was associated with type 2 diabetes (OR 4.35, P = 7.24 × 10−6) and HbA1c (β = 0.113 HbA1c%, βSD = 0.205, P = 7.84 × 10−3). The variant explained 2.5% of diabetes variance in Greenland. Interpretation: The reported variant has the largest population impact of any previously reported variant within a MODY gene. Together with the recessive TBC1D4 variant, we show that close to 1 in 5 cases of diabetes (18%) in Greenland are associated with high-impact genetic variants compared to 1–3% in large populations.publishedVersio

    Precision gestational diabetes treatment: a systematic review and meta-analyses

    Get PDF

    Genotype-stratified treatment for monogenic insulin resistance: a systematic review

    Get PDF

    Genetic factors and risk of type 2 diabetes among women with a history of gestational diabetes: findings from two independent populations

    No full text
    ObjectiveWomen with a history of gestational diabetes mellitus (GDM) have an exceptionally high risk for type 2 diabetes (T2D). Yet, little is known about genetic determinants for T2D in this population. We examined the association of a genetic risk score (GRS) with risk of T2D in two independent populations of women with a history of GDM and how this association might be modified by non-genetic determinants for T2D.Research design and methodsThis cohort study included 2434 white women with a history of GDM from the Nurses’ Health Study II (NHSII, n=1884) and the Danish National Birth Cohort (DNBC, n=550). A GRS for T2D was calculated using 59 candidate single nucleotide polymorphisms for T2D identified from genome-wide association studies in European populations. An alternate healthy eating index (AHEI) score was derived to reflect dietary quality after the pregnancy affected by GDM.ResultsWomen on average were followed for 21 years in NHSII and 13 years in DNBC, during which 446 (23.7%) and 155 (28.2%) developed T2D, respectively. The GRS was generally positively associated with T2D risk in both cohorts. In the pooled analysis, the relative risks (RRs) for increasing quartiles of GRS were 1.00, 0.97, 1.25 and 1.19 (p trend=0.02). In both cohorts, the association appeared to be stronger among women with poorer (AHEI <median) than better dietary quality (AHEI ≥median), although the interaction was not significant. For example, in NHSII, the RRs across increasing quartiles of GRS were 1.00, 0.99, 1.51 and 1.29 (p trend=0.06) among women with poorer dietary quality and 1.00, 0.83, 0.81 and 0.94 (p trend=0.79) among women with better dietary quality (p interaction=0.11).ConclusionsAmong white women with a history of GDM, higher GRS for T2D was associated with an increased risk of T2D
    corecore