13 research outputs found

    Socializing One Health: an innovative strategy to investigate social and behavioral risks of emerging viral threats

    Get PDF
    In an effort to strengthen global capacity to prevent, detect, and control infectious diseases in animals and people, the United States Agency for International Development’s (USAID) Emerging Pandemic Threats (EPT) PREDICT project funded development of regional, national, and local One Health capacities for early disease detection, rapid response, disease control, and risk reduction. From the outset, the EPT approach was inclusive of social science research methods designed to understand the contexts and behaviors of communities living and working at human-animal-environment interfaces considered high-risk for virus emergence. Using qualitative and quantitative approaches, PREDICT behavioral research aimed to identify and assess a range of socio-cultural behaviors that could be influential in zoonotic disease emergence, amplification, and transmission. This broad approach to behavioral risk characterization enabled us to identify and characterize human activities that could be linked to the transmission dynamics of new and emerging viruses. This paper provides a discussion of implementation of a social science approach within a zoonotic surveillance framework. We conducted in-depth ethnographic interviews and focus groups to better understand the individual- and community-level knowledge, attitudes, and practices that potentially put participants at risk for zoonotic disease transmission from the animals they live and work with, across 6 interface domains. When we asked highly-exposed individuals (ie. bushmeat hunters, wildlife or guano farmers) about the risk they perceived in their occupational activities, most did not perceive it to be risky, whether because it was normalized by years (or generations) of doing such an activity, or due to lack of information about potential risks. Integrating the social sciences allows investigations of the specific human activities that are hypothesized to drive disease emergence, amplification, and transmission, in order to better substantiate behavioral disease drivers, along with the social dimensions of infection and transmission dynamics. Understanding these dynamics is critical to achieving health security--the protection from threats to health-- which requires investments in both collective and individual health security. Involving behavioral sciences into zoonotic disease surveillance allowed us to push toward fuller community integration and engagement and toward dialogue and implementation of recommendations for disease prevention and improved health security

    Global, regional, and national burden of disorders affecting the nervous system, 1990–2021: a systematic analysis for the Global Burden of Disease Study 2021

    Get PDF
    BackgroundDisorders affecting the nervous system are diverse and include neurodevelopmental disorders, late-life neurodegeneration, and newly emergent conditions, such as cognitive impairment following COVID-19. Previous publications from the Global Burden of Disease, Injuries, and Risk Factor Study estimated the burden of 15 neurological conditions in 2015 and 2016, but these analyses did not include neurodevelopmental disorders, as defined by the International Classification of Diseases (ICD)-11, or a subset of cases of congenital, neonatal, and infectious conditions that cause neurological damage. Here, we estimate nervous system health loss caused by 37 unique conditions and their associated risk factors globally, regionally, and nationally from 1990 to 2021.MethodsWe estimated mortality, prevalence, years lived with disability (YLDs), years of life lost (YLLs), and disability-adjusted life-years (DALYs), with corresponding 95% uncertainty intervals (UIs), by age and sex in 204 countries and territories, from 1990 to 2021. We included morbidity and deaths due to neurological conditions, for which health loss is directly due to damage to the CNS or peripheral nervous system. We also isolated neurological health loss from conditions for which nervous system morbidity is a consequence, but not the primary feature, including a subset of congenital conditions (ie, chromosomal anomalies and congenital birth defects), neonatal conditions (ie, jaundice, preterm birth, and sepsis), infectious diseases (ie, COVID-19, cystic echinococcosis, malaria, syphilis, and Zika virus disease), and diabetic neuropathy. By conducting a sequela-level analysis of the health outcomes for these conditions, only cases where nervous system damage occurred were included, and YLDs were recalculated to isolate the non-fatal burden directly attributable to nervous system health loss. A comorbidity correction was used to calculate total prevalence of all conditions that affect the nervous system combined.FindingsGlobally, the 37 conditions affecting the nervous system were collectively ranked as the leading group cause of DALYs in 2021 (443 million, 95% UI 378–521), affecting 3·40 billion (3·20–3·62) individuals (43·1%, 40·5–45·9 of the global population); global DALY counts attributed to these conditions increased by 18·2% (8·7–26·7) between 1990 and 2021. Age-standardised rates of deaths per 100 000 people attributed to these conditions decreased from 1990 to 2021 by 33·6% (27·6–38·8), and age-standardised rates of DALYs attributed to these conditions decreased by 27·0% (21·5–32·4). Age-standardised prevalence was almost stable, with a change of 1·5% (0·7–2·4). The ten conditions with the highest age-standardised DALYs in 2021 were stroke, neonatal encephalopathy, migraine, Alzheimer's disease and other dementias, diabetic neuropathy, meningitis, epilepsy, neurological complications due to preterm birth, autism spectrum disorder, and nervous system cancer.InterpretationAs the leading cause of overall disease burden in the world, with increasing global DALY counts, effective prevention, treatment, and rehabilitation strategies for disorders affecting the nervous system are needed

    'Bank systemic risk: An analysis of the sovereign rating ceiling policy and rating downgrades

    No full text
    We investigate the impact that the sovereign ceiling policy has on financial stability. In the event of a sovereign rating downgrade, we find that the rating agencies' sovereign ceiling policy leads to a disproportionate downgrade of the most creditworthy financial institutions in the economy and results in increased systemic risk. This asymmetric variation in bank ratings also impairs equity growth that further exacerbates bank insolvency. Our results are robust to several matching techniques, such as propensity score matching and entropy balancing, falsification tests, subsample analyses, alternative empirical proxies and model specifications

    Differences in Gene Expression in Older Compared With Younger Kidney Transplant Recipients

    No full text
    Background. For the growing numbers of older transplant patients, increased incidence of infection and death compared with younger patients may limit the many benefits provided by transplantation. However, little is known about age-associated immune dysfunction in the older transplant recipient. Methods. A cohort of 60 kidney transplant recipients, 23 older (≥ 60y) and 37 younger (30-59y), matched on antithymocyte induction and donor type (living vs deceased) was evaluated. Gene expression in peripheral blood mononuclear cells 3 months after kidney transplantation was analyzed to compare differences between older and younger patients. Results. Proinflammatory genes were upregulated in older kidney transplant patients, including cytokines IL1-β and IL-6. Downregulated genes were associated with B-cell and T-cell function, including CCR7 and CD27. Analysis of predicted transcription factor binding suggested an increase in proinflammatory transcription factor CCAAT/enhancer binding protein β-binding sites in older patients, whereas interferon regulatory factor 2 transcription factor binding sites were less prevalent. Conclusions. Older kidney transplant recipients exhibited multiple differences in gene expression compared with younger patients, with upregulation of proinflammatory genes and downregulation of adaptive immune response genes. These findings may explain the mechanism of increased vulnerability to infection and malignancy observed in older transplant patients

    Differences in Proinflammatory Cytokines and Monocyte Subtypes in Older as Compared With Younger Kidney Transplant Recipients

    No full text
    Background. The number of elderly patients with end-stage kidney disease requiring kidney transplantation continues to grow. Evaluation of healthy older adults has revealed proinflammatory changes in the immune system, which are posited to contribute to age-associated illnesses via “inflamm-aging.” Immunologic dysfunction is also associated with impaired control of infections. Whether these immunologic changes are found in older kidney transplant recipients is not currently known, but may have important implications for risk for adverse clinical outcomes. Methods. Three months after transplant, innate immune phenotype was evaluated by flow cytometry from 60 kidney transplant recipients (22 older [≥60 years] and 38 younger [<60 years old]). Multiplex cytokine testing was used to evaluate plasma cytokine levels. Younger patients were matched to older patients based on transplant type and induction immune suppression. Results. Older kidney transplant recipients demonstrated decreased frequency of intermediate monocytes (CD14++CD16+) compared with younger patients (1.2% vs 3.3%, P = 0.007), and a trend toward increased frequency of proinflammatory classical monocytes (CD14++CD16−) (94.5% vs 92.1%) (P = 0.065). Increased levels of interferon-gamma (IFN-γ) were seen in older patients. Conclusions. In this pilot study of kidney transplant recipients, we identified differences in the innate immune system in older as compared with younger patients, including increased levels of IFN-γ. This suggests that age-associated nonspecific inflammation persists despite immune suppression. The ability to apply noninvasive testing to transplant recipients will provide tools for patient risk stratification and individualization of immune suppression regimens to improve outcomes after transplantation

    A changing picture of shigellosis in southern Vietnam: shifting species dominance, antimicrobial susceptibility and clinical presentation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Shigellosis remains considerable public health problem in some developing countries. The nature of <it>Shigellae </it>suggests that they are highly adaptable when placed under selective pressure in a human population. This is demonstrated by variation and fluctuations in serotypes and antimicrobial resistance profile of organisms circulating in differing setting in endemic locations. Antimicrobial resistance in the genus <it>Shigella </it>is a constant threat, with reports of organisms in Asia being resistant to multiple antimicrobials and new generation therapies.</p> <p>Methods</p> <p>Here we compare microbiological, clinical and epidemiological data from patients with shigellosis over three different periods in southern Vietnam spanning14 years.</p> <p>Results</p> <p>Our data demonstrates a shift in dominant infecting species (<it>S. flexneri </it>to <it>S. sonnei</it>) and resistance profile of the organisms circulating in southern Vietnam. We find that there was no significant variation in the syndromes associated with either <it>S. sonnei </it>or <it>S. flexneri</it>, yet the clinical features of the disease are more severe in later observations.</p> <p>Conclusions</p> <p>Our findings show a change in clinical presentation of shigellosis in this setting, as the disease may be now more pronounced, this is concurrent with a change in antimicrobial resistance profile. These data highlight the socio-economic development of southern Vietnam and should guide future vaccine development and deployment strategies.</p> <p>Trial Registration</p> <p>Current Controlled Trials ISRCTN55945881</p

    Global, regional, and national incidence and mortality burden of non-COVID-19 lower respiratory infections and aetiologies, 1990–2021 : a systematic analysis from the Global Burden of Disease Study 2021

    Get PDF
    Background Lower respiratory infections (LRIs) are a major global contributor to morbidity and mortality. In 2020–21, non-pharmaceutical interventions associated with the COVID-19 pandemic reduced not only the transmission of SARS-CoV-2, but also the transmission of other LRI pathogens. Tracking LRI incidence and mortality, as well as the pathogens responsible, can guide health-system responses and funding priorities to reduce future burden. We present estimates from the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2021 of the burden of non-COVID-19 LRIs and corresponding aetiologies from 1990 to 2021, inclusive of pandemic effects on the incidence and mortality of select respiratory viruses, globally, regionally, and for 204 countries and territories. Methods We estimated mortality, incidence, and aetiology attribution for LRI, defined by the GBD as pneumonia or bronchiolitis, not inclusive of COVID-19. We analysed 26 259 site-years of mortality data using the Cause of Death Ensemble model to estimate LRI mortality rates. We analysed all available age-specific and sex-specific data sources, including published literature identified by a systematic review, as well as household surveys, hospital admissions, health insurance claims, and LRI mortality estimates, to generate internally consistent estimates of incidence and prevalence using DisMod-MR 2.1. For aetiology estimation, we analysed multiple causes of death, vital registration, hospital discharge, microbial laboratory, and literature data using a network analysis model to produce the proportion of LRI deaths and episodes attributable to the following pathogens: Acinetobacter baumannii, Chlamydia spp, Enterobacter spp, Escherichia coli, fungi, group B streptococcus, Haemophilus influenzae, influenza viruses, Klebsiella pneumoniae, Legionella spp, Mycoplasma spp, polymicrobial infections, Pseudomonas aeruginosa, respiratory syncytial virus (RSV), Staphylococcus aureus, Streptococcus pneumoniae, and other viruses (ie, the aggregate of all viruses studied except influenza and RSV), as well as a residual category of other bacterial pathogens. Findings Globally, in 2021, we estimated 344 million (95% uncertainty interval [UI] 325–364) incident episodes of LRI, or 4350 episodes (4120–4610) per 100 000 population, and 2·18 million deaths (1·98–2·36), or 27·7 deaths (25·1–29·9) per 100 000. 502 000 deaths (406 000–611 000) were in children younger than 5 years, among which 254 000 deaths (197 000–320 000) occurred in countries with a low Socio-demographic Index. Of the 18 modelled pathogen categories in 2021, S pneumoniae was responsible for the highest proportions of LRI episodes and deaths, with an estimated 97·9 million (92·1–104·0) episodes and 505 000 deaths (454 000–555 000) globally. The pathogens responsible for the second and third highest episode counts globally were other viral aetiologies (46·4 million [43·6–49·3] episodes) and Mycoplasma spp (25·3 million [23·5–27·2]), while those responsible for the second and third highest death counts were S aureus (424 000 [380 000–459 000]) and K pneumoniae (176 000 [158 000–194 000]). From 1990 to 2019, the global all-age non-COVID-19 LRI mortality rate declined by 41·7% (35·9–46·9), from 56·5 deaths (51·3–61·9) to 32·9 deaths (29·9–35·4) per 100 000. From 2019 to 2021, during the COVID-19 pandemic and implementation of associated non-pharmaceutical interventions, we estimated a 16·0% (13·1–18·6) decline in the global all-age non-COVID-19 LRI mortality rate, largely accounted for by a 71·8% (63·8–78·9) decline in the number of influenza deaths and a 66·7% (56·6–75·3) decline in the number of RSV deaths. Interpretation Substantial progress has been made in reducing LRI mortality, but the burden remains high, especially in low-income and middle-income countries. During the COVID-19 pandemic, with its associated non-pharmaceutical interventions, global incident LRI cases and mortality attributable to influenza and RSV declined substantially. Expanding access to health-care services and vaccines, including S pneumoniae, H influenzae type B, and novel RSV vaccines, along with new low-cost interventions against S aureus, could mitigate the LRI burden and prevent transmission of LRI-causing pathogens. Funding Bill & Melinda Gates Foundation, Wellcome Trust, and Department of Health and Social Care (UK)

    Global Burden of Cardiovascular Diseases and Risks, 1990-2022

    No full text
    corecore