6 research outputs found

    Molecular Characterization of HIV-1 CRF01_AE in Mekong Delta, Vietnam, and Impact of T-Cell Epitope Mutations on HLA Recognition (ANRS 12159)

    Get PDF
    To date, 11 HIV-1 subtypes and 48 circulating recombinant forms have been described worldwide. The underlying reason why their distribution is so heterogeneous is not clear. Host genetic factors could partly explain this distribution. The aim of this study was to describe HIV-1 strains circulating in an unexplored area of Mekong Delta, Vietnam, and to assess the impact of optimal epitope mutations on HLA binding.We recruited 125 chronically antiretroviral-naive HIV-1-infected subjects from five cities in the Mekong Delta. We performed high-resolution DNA typing of HLA class I alleles, sequencing of Gag and RT-Prot genes and phylogenetic analysis of the strains. Epitope mutations were analyzed in patients bearing the HLA allele restricting the studied epitope. Optimal wild-type epitopes from the Los Alamos database were used as reference. T-cell epitope recognition was predicted using the immune epitope database tool according to three different scores involved in antigen processing (TAP and proteasome scores) and HLA binding (MHC score). with a Vietnamese specificity held by two different haplotypes. The percentage of homology between Mekong and B consensus HIV-1 sequences was above 85%. Divergent epitopes had TAP and proteasome scores comparable with wild-type epitopes. MHC scores were significantly lower in divergent epitopes with a mean of 2.4 (±0.9) versus 2 (±0.7) in non-divergent ones (p<0.0001).Our study confirms the wide predominance of CRF01_AE in the Mekong Delta where patients harbor a specific HLA pattern. Moreover, it demonstrates the lower MHC binding affinity among divergent epitopes. This weak immune pressure combined with a narrow genetic diversity favors immune escape and could explain why CRF01_AE is still predominant in Vietnam, particularly in the Mekong area

    Pre-clinical drug-drug interactions (DDIs) of gefitinib with/without losartan and selective serotonin reuptake inhibitors (SSRIs): citalopram, fluoxetine, fluvoxamine, paroxetine, sertraline, and venlafaxine

    No full text
    Objective: To evaluate drug-drug interactions (DDIs) between gefitinib with/without losartan and selective serotonin reuptake inhibitors (SSRIs). Methods: In vitro supersomes were used to identify CYP isoenzymes (CYP1A2, 2C9, 2C19, 2D6, and 3A4) involved in drug metabolism, and in vitro pooled cryopreserved primary human hepatocytes were employed to investigate DDIs. Results: The isoenzymes that showed drug degradation are listed in parentheses beside the respective drug: gefitinib (CYP2D6, 3A4, 1A2, 2C9, and 2C19), losartan (CYP2C9 and 3A4), citalopram (CYP2D6, 2C19, 3A4, and 2C9), fluoxetine (CYP2D6, 2C9, and 2C19), fluvoxamine (CYP2D6, 2C9, and 2C19), paroxetine (CYP2D6, 3A4, and 2C9), sertraline (CYP2D6, 2C9, 2C19, 1A2, and 3A4), and venlafaxine (CYP2D6 and 2C19).DDIs from human hepatocytes assays revealed that gefitinib had significant metabolic changes in (1:1) combination with paroxetine or sertraline (p-value ​= ​0.042 and 0.025 respectively) and (1:1:1) combination with losartan and fluoxetine, fluvoxamine, paroxetine, or sertraline (p-value ​= ​0.009, 0.027, 0.048, and 0.037 respectively). Losartan showed significant changes in (1:1:1) combination with gefitinib and fluoxetine or sertraline (p-value ​= ​0.026 and 0.008 respectively). Fluoxetine, fluvoxamine, and paroxetine underwent significant changes in (1:1:1) combination with gefitinib and losartan (p-value ​= ​0.003, 0.022, and 0.046 respectively). Sertraline had significant changes within all combinations: DDIs with gefitinib alone and in combination with gefitinib and losartan (p-value ​= ​0.009 and 0.008 respectively). Citalopram and venlafaxine appeared to be unaffected by any combination. Conclusion: The study provides a clear proof-of concept for in vitro metabolic DDI testing. While identifying compounds by their inhibition potential can help better predict their metabolism, it cannot resolve problems that arise from DDIs since the overall degree of effectiveness is unknown. As shown in this study, gefitinib has been identified as a weak CYP2C19 and 2D6 inhibitor, however, gefitinib can have significant DDIs with sertraline. Furthermore, multiple drug combinations (1:1:1) can change the significance of previously determined DDIs in (1:1) combination. Thus, in vitro assays can potentially provide better guidance for multidrug regimens with minimal risk for DDIs

    Spatial Analysis of Drug-Susceptible and Multidrug-Resistant Cases of Tuberculosis, Ho Chi Minh City, Vietnam, 2020–2023

    No full text
    We characterized the spatial distribution of drug-susceptible (DS) and multidrug-resistant (MDR) tuberculosis (TB) cases in Ho Chi Minh City, Vietnam, a major metropolis in southeastern Asia, and explored demographic and socioeconomic factors associated with local TB burden. Hot spots of DS and MDR TB incidence were observed in the central parts of Ho Chi Minh City, and substantial heterogeneity was observed across wards. Positive spatial autocorrelation was observed for both DS TB and MDR TB. Ward-level TB incidence was associated with HIV prevalence and the male proportion of the population. No ward-level demographic and socioeconomic indicators were associated with MDR TB case count relative to total TB case count. Our findings might inform spatially targeted TB control strategies and provide insights for generating hypotheses about the nature of the relationship between DS and MDR TB in Ho Chi Minh City and the wider southeastern region of Asia

    Discovery and Structural Optimization of Acridones as Broad-Spectrum Antimalarials.

    No full text
    Malaria remains one of the deadliest diseases in the world today. Novel chemoprophylactic and chemotherapeutic antimalarials are needed to support the renewed eradication agenda. We have discovered a novel antimalarial acridone chemotype with dual-stage activity against both liver-stage and blood-stage malaria. Several lead compounds generated from structural optimization of a large library of novel acridones exhibit efficacy in the following systems: (1) picomolar inhibition of in vitro Plasmodium falciparum blood-stage growth against multidrug-resistant parasites; (2) curative efficacy after oral administration in an erythrocytic Plasmodium yoelii murine malaria model; (3) prevention of in vitro Plasmodium berghei sporozoite-induced development in human hepatocytes; and (4) protection of in vivo P. berghei sporozoite-induced infection in mice. This study offers the first account of liver-stage antimalarial activity in an acridone chemotype. Details of the design, chemistry, structure-activity relationships, safety, metabolic/pharmacokinetic studies, and mechanistic investigation are presented herein

    Discovery and Structural Optimization of Acridones as Broad-Spectrum Antimalarials

    No full text
    Malaria remains one of the deadliest diseases in the world today. Novel chemoprophylactic and chemotherapeutic antimalarials are needed to support the renewed eradication agenda. We have discovered a novel antimalarial acridone chemotype with dual-stage activity against both liver-stage and blood-stage malaria. Several lead compounds generated from structural optimization of a large library of novel acridones exhibit efficacy in the following systems: (1) picomolar inhibition of in vitro Plasmodium falciparum blood-stage growth against multidrug-resistant parasites; (2) curative efficacy after oral administration in an erythrocytic Plasmodium yoelii murine malaria model; (3) prevention of in vitro Plasmodium berghei sporozoite-induced development in human hepatocytes; and (4) protection of in vivo P. berghei sporozoite-induced infection in mice. This study offers the first account of liver-stage antimalarial activity in an acridone chemotype. Details of the design, chemistry, structure–activity relationships, safety, metabolic/pharmacokinetic studies, and mechanistic investigation are presented herein
    corecore