5 research outputs found

    Evidence of rift valley fever seroprevalence in the Sahrawi semi-nomadic pastoralist system, Western Sahara

    Get PDF
    BACKGROUND: The increasing global importance of Rift Valley fever (RVF) is clearly demonstrated by its geographical expansion. The presence of a wide range of host and vector species, and the epidemiological characteristics of RVF, have led to concerns that epidemics will continue to occur in previously unaffected regions of Africa. The proximity of the Sahrawi territories of Western Sahara to endemic countries, such as Mauritania, Senegal, and Mali with periodic isolation of virus and serological evidence of RVF, and the intensive livestock trade in the region results in a serious risk of RVF spread in the Sahrawi territories, and potentially from there to the Maghreb and beyond. A sero-epidemiological survey was conducted in the Saharawi territories between March and April 2008 to investigate the possible presence of the RVF virus (RVFV) and associated risk factors. A two-stage cluster sampling design was used, incorporating 23 sampling sites. RESULTS: A total of 982 serum samples was collected from 461 sheep, 463 goats and 58 camels. Eleven samples (0.97%) tested positive for IgG against the RVFV. There were clusters of high seroprevalence located mostly in the Tifariti (7.69%) and Mehaires (7.14%) regions, with the Tifariti event having been found in one single flock (4/26 positive animals). Goats and older animals were at a significantly increased risk being seropositive (p = 0.007 and p = 0.007, respectively). CONCLUSION: The results suggest potential RVF activity in the study area, where intense livestock movement and trade with neighbouring countries might be considered as a primary determinant in the spread of the disease. The importance of a continuous field investigation is reinforced, in light of the risk of RVF expansion to historically unaffected regions of Africa

    Social factors affecting seasonal variation in bovine trypanosomiasis on the Jos Plateau, Nigeria

    Get PDF
    BACKGROUND: African Animal Trypanosomiasis (AAT) is a widespread disease of livestock in Nigeria and presents a major constraint to rural economic development. The Jos Plateau was considered free from tsetse flies and the trypanosomes they transmit due to its high altitude and this trypanosomiasis free status attracted large numbers of cattle-keeping pastoralists to the area. The Jos Plateau now plays a major role in the national cattle industry in Nigeria, accommodating approximately 7% of the national herd, supporting 300,000 pastoralists and over one million cattle. During the past two decades tsetse flies have invaded the Jos Plateau and animal trypanosomiasis has become a significant problem for livestock keepers. Here we investigate the epidemiology of trypanosomiasis as a re-emerging disease on the Plateau, examining the social factors that influence prevalence and seasonal variation of bovine trypanosomiasis. METHODS: In 2008 a longitudinal two-stage cluster survey was undertaken on the Jos Plateau. Cattle were sampled in the dry, early wet and late wet seasons. Parasite identification was undertaken using species-specific polymerase chain reactions to determine the prevalence and distribution of bovine trypanosomiasis. Participatory rural appraisal was also conducted to determine knowledge, attitudes and practices concerning animal husbandry and disease control. RESULTS: Significant seasonal variation between the dry season and late wet season was recorded across the Jos Plateau, consistent with expected variation in tsetse populations. However, marked seasonal variations were also observed at village level to create 3 distinct groups: Group 1 in which 50% of villages followed the general pattern of low prevalence in the dry season and high prevalence in the wet season; Group 2 in which 16.7% of villages showed no seasonal variation and Group 3 in which 33.3% of villages showed greater disease prevalence in the dry season than in the wet season. CONCLUSIONS: There was high seasonal variation at the village level determined by management as well as climatic factors. The growing influence of management factors on the epidemiology of trypanosomiasis highlights the impact of recent changes in land use and natural resource competition on animal husbandry decisions in the extensive pastoral production system

    A longitudinal survey of African animal trypanosomiasis in domestic cattle on the Jos Plateau, Nigeria:prevalence, distribution and risk factors

    Get PDF
    BACKGROUND: Trypanosomiasis is a widespread disease of livestock in Nigeria and a major constraint to the rural economy. The Jos Plateau, Nigeria was free from tsetse flies and the trypanosomes they transmit due to its high altitude and the absence of animal trypanosomiasis attracted large numbers of cattle-keeping pastoralists to inhabit the plateau. The Jos Plateau now plays a significant role in the national cattle industry, accommodating approximately 7% of the national herd and supporting 300,000 pastoralists and over one million cattle. However, during the past two decades tsetse flies have invaded the Jos Plateau and animal trypanosomiasis has become a significant problem for livestock keepers. METHODS: In 2008 a longitudinal two-stage cluster survey on the Jos Plateau. Cattle were sampled in the dry, early wet and late wet seasons. Parasite identification was undertaken using species-specific polymerase chain reactions to determine the prevalence and distribution bovine trypanosomiasis. Logistic regression was performed to determine risk factors for disease. RESULTS: The prevalence of bovine trypanosomiasis (Trypanosoma brucei brucei, Trypanosoma congolense savannah, Trypanosoma vivax) across the Jos Plateau was found to be high at 46.8% (39.0 – 54.5%) and significant, seasonal variation was observed between the dry season and the end of the wet season. T. b. brucei was observed at a prevalence of 3.2% (1% – 5.5%); T. congolense at 27.7% (21.8% - 33.6%) and T. vivax at 26.7% (18.2% - 35.3%). High individual variation was observed in trypanosomiasis prevalence between individual villages on the Plateau, ranging from 8.8% to 95.6%. Altitude was found to be a significant risk factor for trypanosomiasis whilst migration also influenced risk for animal trypanosomiasis. CONCLUSIONS: Trypanosomiasis is now endemic on the Jos Plateau showing high prevalence in cattle and is influenced by seasonality, altitude and migration practices. Attempts to successfully control animal trypanosomiasis on the Plateau will need to take into account the large variability in trypanosomiasis infection rates between villages, the influence of land use, and husbandry and management practices of the pastoralists, all of which affect the epidemiology of the disease

    Improvements on Restricted Insecticide Application Protocol for Control of Human and Animal African Trypanosomiasis in Eastern Uganda

    Get PDF
    African trypanosomes constrain livestock and human health in Sub-Saharan Africa, and aggravate poverty and hunger of these otherwise largely livestock-keeping communities. To solve this, there is need to develop and use effective and cheap tsetse control methods. To this end, we aimed at determining the smallest proportion of a cattle herd that needs to be sprayed on the legs, bellies and ears (RAP) for effective Human and Animal African Trypanosomiasis (HAT/AAT) control.; Cattle in 20 villages were ear-tagged and injected with two doses of diminazene diaceturate (DA) forty days apart, and randomly allocated to one of five treatment regimens namely; no treatment, 25%, 50%, 75% monthly RAP and every 3 month Albendazole drench. Cattle trypanosome re-infection rate was determined by molecular techniques. ArcMap V10.3 was used to map apparent tsetse density (FTD) from trap catches. The effect of graded RAP on incidence risk ratios and trypanosome prevalence was determined using Poisson and logistic random effect models in R and STATA V12.1 respectively. Incidence was estimated at 9.8/100 years in RAP regimens, significantly lower compared to 25.7/100 years in the non-RAP regimens (incidence rate ratio: 0.37; 95% CI: 0.22-0.65; P>0.001). Likewise, trypanosome prevalence after one year of follow up was significantly lower in RAP animals than in non-RAP animals (4% vs 15%, OR: 0.20, 95% CI: 0.08-0.44; P>0.001). Contrary to our expectation, level of protection did not increase with increasing proportion of animals treated.; Reduction in RAP coverage did not significantly affect efficacy of treatment. This is envisaged to improve RAP adaptability to low income livestock keepers but needs further evaluation in different tsetse challenge, HAT/AAT transmission rates and management systems before adopting it for routine tsetse control programs
    corecore