157 research outputs found
Tongue carcinoma in an adult Down's syndrome patient: a case report
<p>Abstract</p> <p>Background</p> <p>Cancer of the oral cavity is rare and unusual in Down's syndrome patient. The over all risk is similar to that in adult population.</p> <p>Case presentation</p> <p>This case report describes a 27 years old male with Down's syndrome, non-smoker, who developed a poorly differentiated squamous cell carcinoma of the tongue. The patient underwent a hemiglossectomy without neck dissection followed by a postoperative locoregional radiation therapy to a total tumor-bed dose of 56 Gy and 45 Gy to the neck. Three months later, the patient presented with local tongue recurrence and was treated by Docetaxel and Carboplatin chemotherapy with no significant response. The patient died one month later, 9 months after his initial diagnosis.</p> <p>Conclusion</p> <p>To our knowledge, this is the first case of tongue carcinoma arising in a patient with Down's syndrome. This unique case might not be sufficient to make a significant conclusion on the prognosis and survival of these patients but will increase the awareness about this possibility and will help in the appropriate management of Down's syndrome patients.</p
ZyFISH: A Simple, Rapid and Reliable Zygosity Assay for Transgenic Mice
Microinjection of DNA constructs into fertilized mouse oocytes typically results in random transgene integration at a single genomic locus. The resulting transgenic founders can be used to establish hemizygous transgenic mouse lines. However, practical and experimental reasons often require that such lines be bred to homozygosity. Transgene zygosity can be determined by progeny testing assays which are expensive and time-consuming, by quantitative Southern blotting which is labor-intensive, or by quantitative PCR (qPCR) which requires transgene-specific design. Here, we describe a zygosity assessment procedure based on fluorescent in situ hybridization (zyFISH). The zyFISH protocol entails the detection of transgenic loci by FISH and the concomitant assignment of homozygosity using a concise and unbiased scoring system. The method requires small volumes of blood, is scalable to at least 40 determinations per assay, and produces results entirely consistent with the progeny testing assay. This combination of reliability, simplicity and cost-effectiveness makes zyFISH a method of choice for transgenic mouse zygosity determinations
GeneβEnvironment Interactions at Nucleotide Resolution
Interactions among genes and the environment are a common source of phenotypic variation. To characterize the interplay between genetics and the environment at single nucleotide resolution, we quantified the genetic and environmental interactions of four quantitative trait nucleotides (QTN) that govern yeast sporulation efficiency. We first constructed a panel of strains that together carry all 32 possible combinations of the 4 QTN genotypes in 2 distinct genetic backgrounds. We then measured the sporulation efficiencies of these 32 strains across 8 controlled environments. This dataset shows that variation in sporulation efficiency is shaped largely by genetic and environmental interactions. We find clear examples of QTN:environment, QTN: background, and environment:background interactions. However, we find no QTN:QTN interactions that occur consistently across the entire dataset. Instead, interactions between QTN only occur under specific combinations of environment and genetic background. Thus, what might appear to be a QTN:QTN interaction in one background and environment becomes a more complex QTN:QTN:environment:background interaction when we consider the entire dataset as a whole. As a result, the phenotypic impact of a set of QTN alleles cannot be predicted from genotype alone. Our results instead demonstrate that the effects of QTN and their interactions are inextricably linked both to genetic background and to environmental variation
Clustered Gene Expression Changes Flank Targeted Gene Loci in Knockout Mice
Gene expression profiling using microarrays is a powerful technology widely used to study regulatory networks. Profiling of mRNA levels in mutant organisms has the potential to identify genes regulated by the mutated protein.Using tissues from multiple lines of knockout mice we have examined genome-wide changes in gene expression. We report that a significant proportion of changed genes were found near the targeted gene.The apparent clustering of these genes was explained by the presence of flanking DNA from the parental ES cell. We provide recommendations for the analysis and reporting of microarray data from knockout mice
Allelic Variation and Differential Expression of the mSIN3A Histone Deacetylase Complex Gene Arid4b Promote Mammary Tumor Growth and Metastasis
Accumulating evidence suggests that breast cancer metastatic progression is modified by germline polymorphism, although specific modifier genes have remained largely undefined. In the current study, we employ the MMTV-PyMT transgenic mouse model and the AKXD panel of recombinant inbred mice to identify ATβrich interactive domain 4B (Arid4b; NM_194262) as a breast cancer progression modifier gene. Ectopic expression of Arid4b promoted primary tumor growth in vivo as well as increased migration and invasion in vitro, and the phenotype was associated with polymorphisms identified between the AKR/J and DBA/2J alleles as predicted by our genetic analyses. Stable shRNAβmediated knockdown of Arid4b caused a significant reduction in pulmonary metastases, validating a role for Arid4b as a metastasis modifier gene. ARID4B physically interacts with the breast cancer metastasis suppressor BRMS1, and we detected differential binding of the Arid4b alleles to histone deacetylase complex members mSIN3A and mSDS3, suggesting that the mechanism of Arid4b action likely involves interactions with chromatin modifying complexes. Downregulation of the conserved Tpx2 gene network, which is comprised of many factors regulating cell cycle and mitotic spindle biology, was observed concomitant with loss of metastatic efficiency in Arid4b knockdown cells. Consistent with our genetic analysis and in vivo experiments in our mouse model system, ARID4B expression was also an independent predictor of distant metastasis-free survival in breast cancer patients with ER+ tumors. These studies support a causative role of ARID4B in metastatic progression of breast cancer
Anti-Bacterial Effects of Poly-N-Acetyl-Glucosamine Nanofibers in Cutaneous Wound Healing: Requirement for Akt1
Treatment of cutaneous wounds with poly-N-acetyl-glucosamine nanofibers (sNAG) results in increased kinetics of wound closure in diabetic animal models, which is due in part to increased expression of several cytokines, growth factors, and innate immune activation. Defensins are also important for wound healing and anti-microbial activities. Therefore, we tested whether sNAG nanofibers induce defensin expression resulting in bacterial clearance.The role of sNAG in defensin expression was examined using immunofluoresence microscopy, pharmacological inhibition, and shRNA knockdown in vitro. The ability of sNAG treatment to induce defensin expression and bacterial clearance in WT and AKT1-/- mice was carried out using immunofluoresent microscopy and tissue gram staining. Neutralization, using an antibody directed against Ξ²-defensin 3, was utilized to determine if the antimicrobial properties of sNAG are dependent on the induction of defensin expression.sNAG treatment causes increased expression of both Ξ±- and Ξ²-type defensins in endothelial cells and Ξ²-type defensins in keratinocytes. Pharmacological inhibition and shRNA knockdown implicates Akt1 in sNAG-dependent defensin expression in vitro, an activity also shown in an in vivo wound healing model. Importantly, sNAG treatment results in increased kinetics of wound closure in wild type animals. sNAG treatment decreases bacterial infection of cutaneous wounds infected with Staphylococcus aureus in wild type control animals but not in similarly treated Akt1 null animals. Furthermore, sNAG treatment of S. aureus infected wounds show an increased expression of Ξ²-defensin 3 which is required for sNAG-dependent bacterial clearance. Our findings suggest that Akt1 is involved in the regulation of defensin expression and the innate immune response important for bacterial clearance. Moreover, these findings support the use of sNAG nanofibers as a novel method for enhancing wound closure while simultaneously decreasing wound infection
Three allele combinations associated with Multiple Sclerosis
BACKGROUND: Multiple sclerosis (MS) is an immune-mediated disease of polygenic etiology. Dissection of its genetic background is a complex problem, because of the combinatorial possibilities of gene-gene interactions. As genotyping methods improve throughput, approaches that can explore multigene interactions appropriately should lead to improved understanding of MS. METHODS: 286 unrelated patients with definite MS and 362 unrelated healthy controls of Russian descent were genotyped at polymorphic loci (including SNPs, repeat polymorphisms, and an insertion/deletion) of the DRB1, TNF, LT, TGFΞ²1, CCR5 and CTLA4 genes and TNFa and TNFb microsatellites. Each allele carriership in patients and controls was compared by Fisher's exact test, and disease-associated combinations of alleles in the data set were sought using a Bayesian Markov chain Monte Carlo-based method recently developed by our group. RESULTS: We identified two previously unknown MS-associated tri-allelic combinations: -509TGFΞ²1*C, DRB1*18(3), CTLA4*G and -238TNF*B1,-308TNF*A2, CTLA4*G, which perfectly separate MS cases from controls, at least in the present sample. The previously described DRB1*15(2) allele, the microsatellite TNFa9 allele and the biallelic combination CCR5Ξ32, DRB1*04 were also reidentified as MS-associated. CONCLUSION: These results represent an independent validation of MS association with DRB1*15(2) and TNFa9 in Russians and are the first to find the interplay of three loci in conferring susceptibility to MS. They demonstrate the efficacy of our approach for the identification of complex-disease-associated combinations of alleles
Strain-Dependent Differences in Bone Development, Myeloid Hyperplasia, Morbidity and Mortality in Ptpn2-Deficient Mice
Single nucleotide polymorphisms in the gene encoding the protein tyrosine phosphatase TCPTP (encoded by PTPN2) have been linked with the development of autoimmunity. Here we have used Cre/LoxP recombination to generate Ptpn2ex2β/ex2β mice with a global deficiency in TCPTP on a C57BL/6 background and compared the phenotype of these mice to Ptpn2β/β mice (BALB/c-129SJ) generated previously by homologous recombination and backcrossed onto the BALB/c background. Ptpn2ex2β/ex2β mice exhibited growth retardation and a median survival of 32 days, as compared to 21 days for Ptpn2β/β (BALB/c) mice, but the overt signs of morbidity (hunched posture, piloerection, decreased mobility and diarrhoea) evident in Ptpn2β/β (BALB/c) mice were not detected in Ptpn2ex2β/ex2β mice. At 14 days of age, bone development was delayed in Ptpn2β/β (BALB/c) mice. This was associated with increased trabecular bone mass and decreased bone remodeling, a phenotype that was not evident in Ptpn2ex2β/ex2β mice. Ptpn2ex2β/ex2β mice had defects in erythropoiesis and B cell development as evident in Ptpn2β/β (BALB/c) mice, but not splenomegaly and did not exhibit an accumulation of myeloid cells in the spleen as seen in Ptpn2β/β (BALB/c) mice. Moreover, thymic atrophy, another feature of Ptpn2β/β (BALB/c) mice, was delayed in Ptpn2ex2β/ex2β mice and preceded by an increase in thymocyte positive selection and a concomitant increase in lymph node T cells. Backcrossing Ptpn2β/β (BALB/c) mice onto the C57BL/6 background largely recapitulated the phenotype of Ptpn2ex2β/ex2β mice. Taken together these results reaffirm TCPTP's important role in lymphocyte development and indicate that the effects on morbidity, mortality, bone development and the myeloid compartment are strain-dependent
- β¦