27 research outputs found

    Anderson localization on the Cayley tree : multifractal statistics of the transmission at criticality and off criticality

    Full text link
    In contrast to finite dimensions where disordered systems display multifractal statistics only at criticality, the tree geometry induces multifractal statistics for disordered systems also off criticality. For the Anderson tight-binding localization model defined on a tree of branching ratio K=2 with NN generations, we consider the Miller-Derrida scattering geometry [J. Stat. Phys. 75, 357 (1994)], where an incoming wire is attached to the root of the tree, and where KNK^{N} outcoming wires are attached to the leaves of the tree. In terms of the KNK^{N} transmission amplitudes tjt_j, the total Landauer transmission is T≡∑j∣tj∣2T \equiv \sum_j | t_j |^2, so that each channel jj is characterized by the weight wj=∣tj∣2/Tw_j=| t_j |^2/T. We numerically measure the typical multifractal singularity spectrum f(α)f(\alpha) of these weights as a function of the disorder strength WW and we obtain the following conclusions for its left-termination point α+(W)\alpha_+(W). In the delocalized phase W<WcW<W_c, α+(W)\alpha_+(W) is strictly positive α+(W)>0\alpha_+(W)>0 and is associated with a moment index q+(W)>1q_+(W)>1. At criticality, it vanishes α+(Wc)=0\alpha_+(W_c)=0 and is associated with the moment index q+(Wc)=1q_+(W_c)=1. In the localized phase W>WcW>W_c, α+(W)=0\alpha_+(W)=0 is associated with some moment index q+(W)<1q_+(W)<1. We discuss the similarities with the exact results concerning the multifractal properties of the Directed Polymer on the Cayley tree.Comment: v2=final version (16 pages

    On the statistics of superlocalized states in self-affine disordered potentials

    Full text link
    We investigate the statistics of eigenstates in a weak self-affine disordered potential in one dimension, whose Gaussian fluctuations grow with distance with a positive Hurst exponent HH. Typical eigenstates are superlocalized on samples much larger than a well-defined crossover length, which diverges in the weak-disorder regime. We present a parallel analytical investigation of the statistics of these superlocalized states in the discrete and the continuum formalisms. For the discrete tight-binding model, the effective localization length decays logarithmically with the sample size, and the logarithm of the transmission is marginally self-averaging. For the continuum Schr\"odinger equation, the superlocalization phenomenon has more drastic effects. The effective localization length decays as a power of the sample length, and the logarithm of the transmission is fully non-self-averaging.Comment: 21 pages, 6 figure

    Universality in quantum parametric correlations

    Full text link
    We investigate the universality of correlation functions of chaotic and disordered quantum systems as an external parameter is varied. A new, general scaling procedure is introduced which makes the theory invariant under reparametrizations. Under certain general conditions we show that this procedure is unique. The approach is illustrated with the particular case of the distribution of eigenvalue curvatures. We also derive a semiclassical formula for the non-universal scaling factor, and give an explicit expression valid for arbitrary deformations of a billiard system.Comment: LaTeX, 10 pages, 2 figures. Revised version, to appear in PR

    Quadrupole Collective States in a Large Single-J Shell

    Full text link
    We discuss the ability of the generator coordinate method (GCM) to select collective states in microscopic calculations. The model studied is a single-jj shell with hamiltonian containing the quadrupole-quadrupole interaction. Quadrupole collective excitations are constructed by means of the quadrupole single-particle operator. Lowest collective bands for jj=31/2 and particle numbers NN=4,6,8,10,12, and 1414 are found. For lower values of jj, exact solutions are obtained and compared with the GCM results.Comment: submitted for publication in Phys. Rev. C, revtex, 28 pages, 15 PostScript figures available on request from [email protected], preprint No. IFT/17/9

    Self-Consistent Approximations for Superconductivity beyond the Bardeen-Cooper-Schrieffer Theory

    Full text link
    We develop a concise self-consistent perturbation expansion for superconductivity where all the pair processes are naturally incorporated without drawing "anomalous" Feynman diagrams. This simplification results from introducing an interaction vertex that is symmetric in the particle-hole indices besides the ordinary space-spin coordinates. The formalism automatically satisfies conservation laws, includes the Luttinger-Ward theory as the normal-state limit, and reproduces the Bardeen-Cooper-Schrieffer theory as the lowest-order approximation. It enables us to study the thermodynamic, single-particle, two-particle, and dynamical properties of superconductors with competing fluctuations based on a single functional Φ[G^]\Phi[\hat{G}] of Green's function G^\hat{G} in the Nambu space. Specifically, we derive closed equations in the FLEX-S approximation, i.e., the fluctuation exchange approximation for superconductivity with all the pair processes, which contains extra terms besides those in the standard FLEX approximation.Comment: 14 pages, 6 figure

    An SU(2) Analog of the Azbel--Hofstadter Hamiltonian

    Full text link
    Motivated by recent findings due to Wiegmann and Zabrodin, Faddeev and Kashaev concerning the appearence of the quantum U_q(sl(2)) symmetry in the problem of a Bloch electron on a two-dimensional magnetic lattice, we introduce a modification of the tight binding Azbel--Hofstadter Hamiltonian that is a specific spin-S Euler top and can be considered as its ``classical'' analog. The eigenvalue problem for the proposed model, in the coherent state representation, is described by the S-gap Lam\'e equation and, thus, is completely solvable. We observe a striking similarity between the shapes of the spectra of the two models for various values of the spin S.Comment: 19 pages, LaTeX, 4 PostScript figures. Relation between Cartan and Cartesian deformation of SU(2) and numerical results added. Final version as will appear in J. Phys. A: Math. Ge

    Short-ranged RVB physics, quantum dimer models and Ising gauge theories

    Full text link
    Quantum dimer models are believed to capture the essential physics of antiferromagnetic phases dominated by short-ranged valence bond configurations. We show that these models arise as particular limits of Ising (Z_2) gauge theories, but that in these limits the system develops a larger local U(1) invariance that has different consequences on different lattices. Conversely, we note that the standard Z_2 gauge theory is a generalised quantum dimer model, in which the particular relaxation of the hardcore constraint for the dimers breaks the U(1) down to Z_2. These mappings indicate that at least one realization of the Senthil-Fisher proposal for fractionalization is exactly the short ranged resonating valence bond (RVB) scenario of Anderson and of Kivelson, Rokhsar and Sethna. They also suggest that other realizations will require the identification of a local low energy, Ising link variable {\it and} a natural constraint. We also discuss the notion of topological order in Z_2 gauge theories and its connection to earlier ideas in RVB theory. We note that this notion is not central to the experiment proposed by Senthil and Fisher to detect vortices in the conjectured Z_2 gauge field.Comment: 17 pages, 4 postscript figures automatically include

    Random-Matrix Theory of Quantum Transport

    Get PDF
    This is a comprehensive review of the random-matrix approach to the theory of phase-coherent conduction in mesocopic systems. The theory is applied to a variety of physical phenomena in quantum dots and disordered wires, including universal conductance fluctuations, weak localization, Coulomb blockade, sub-Poissonian shot noise, reflectionless tunneling into a superconductor, and giant conductance oscillations in a Josephson junction.Comment: 85 pages including 52 figures, to be published in Rev.Mod.Phy

    The nuclear collective motion

    Full text link
    Current developments in nuclear structure are discussed from a theoretical perspective. First, the progress in theoretical modeling of nuclei is reviewed. This is followed by the discussion of nuclear time scales, nuclear collective modes, and nuclear deformations. Some perspectives on nuclear structure research far from stability are given. Finally, interdisciplinary aspects of the nuclear many-body problem are outlined
    corecore