44 research outputs found
Diagnostic accuracy of F-18-FDG PET/CT and MR imaging in patients with adenoid cystic carcinoma
Contains fulltext :
181614.pdf (publisher's version ) (Open Access
68Ga-DOTATOC versus 68Ga-DOTATATE PET/CT in functional imaging of neuroendocrine tumors
Radiolabeled somatostatin analogs represent valuable tools for both in vivo diagnosis and therapy of neuroendocrine tumors (NETs) because of the frequent tumoral overexpression of somatostatin receptors (sst). The 2 compounds most often used in functional imaging with PET are (68)Ga-DOTATATE and (68)Ga-DOTATOC. Both ligands share a quite similar sst binding profile. However, the in vitro affinity of (68)Ga-DOTATATE in binding the sst subtype 2 (sst2) is approximately 10-fold higher than that of (68)Ga-DOTATOC. This difference may affect their efficiency in the detection of NET lesions because it is the sst2 that is predominantly overexpressed in NET. We thus compared the diagnostic value of PET/CT with both radiolabeled somatostatin analogs ((68)Ga-DOTATATE and (68)Ga-DOTATOC) in the same NET patients
Neuroendocrine Neoplasia within the German NET Registry
Neuroendocrine neoplasias (NEN) comprise a rare tumor entity with heterogeneous biology, prognosis and therapeutic options. Together with the recent publication of the first German guidelines on diagnostics and therapy of NEN, an analysis of the German NET-registry cohort of the German Society of Endocrinology (DGE) was performed. For this purpose, 2686 cases were extracted and their patient characteristics (e. g., age, sex, histopathological characterization, grading and staging) were displayed and outcomes were calculated. Additionally, the systemic treatment reality in the two largest subgroups, small intestinal and pancreatic NEN, was analyzed within metastatic patients. Distribution of primary tumor localization, histopathological classification, disease stage and overall survival was comparable with results from international registry studies. In concordance with current guidelines, somatostatin analogues (SSA) and peptide-receptor-radionuclide-therapy (PRRT) were the most common therapeutic modalities in small intestinal NEN. In pancreatic NEN, chemotherapy was used in first line as often as SSA. In second line, chemotherapy was used as often as PRRT. WHO-classification of 2010 and TNM staging proved to be of prognostic relevance. The current analysis of the German NET-registry characterizes a multicentric, interdisciplinary cohort of NEN patients throughout Germany and it describes the applied systemic treatment modalities and overall outcome as well as the prognostic value of the WHO classification of 2010 and TNM staging
Differential uptake of (68)Ga-DOTATOC and (68)Ga-DOTATATE in PET/CT of gastroenteropancreatic neuroendocrine tumors
PURPOSE
Abundant expression of somatostatin receptors (sst) is a characteristic of neuroendocrine tumors (NET). Thus, radiolabeled somatostatin analogs have emerged as important tools for both in vivo diagnosis and therapy of NET. The two compounds most often used in functional imaging with positron emission tomography (PET) are (68)Ga-DOTATATE and (68)Ga-DOTATOC. Both analogs share a quite similar sst binding profile. However, the in vitro affinity of (68)Ga-DOTATATE in binding the sst subtype 2 (sst2) is approximately tenfold higher than that of (68)Ga-DOTATOC. This difference may affect their efficiency in detection of NET lesions, as sst2 is the predominant receptor subtype on gastroenteropancreatic NET. We thus compared the diagnostic value of PET/CT with both radiolabeled somatostatin analogs ((68)Ga-DOTATATE and (68)Ga-DOTATOC) in the same patients with gastroenteropancreatic NET.
PATIENTS AND METHODS
Twenty-seven patients with metastatic gastroenteropancreatic NET underwent (68)Ga-DOTATOC and (68)Ga-DOTATATE PET/CT as part of the workup before prospective peptide receptor radionuclide therapy (PRRT). The performance of both imaging methods was analyzed and compared for detection of individual lesions per patient and for eight defined body regions. A region was regarded as positive if at least one lesion was detected in that region. In addition, radiopeptide uptake in terms of the maximal standardized uptake value (SUV(max)) was compared for concordant lesions and renal parenchyma.
RESULTS
Fifty-one regions were found positive with both (68)Ga-DOTATATE and (68)Ga-DOTATOC. Overall, however, significantly fewer lesions were detected with (68)Ga-DOTATATE in comparison with (68)Ga-DOTATOC (174 versus 179, p < 0.05). Mean (68)Ga-DOTATATE SUV(max) across all lesions was significantly lower compared with (68)Ga-DOTATOC (16.9 ± 6.8 versus 22.1 ± 12.0, p < 0.01). Mean SUV(max) for renal parenchyma was not significantly different between (68)Ga-DOTATATE and (68)Ga-DOTATOC (12.6 ± 2.6 versus 12.6 ± 2.7).
CONCLUSIONS
(68)Ga-DOTATOC and (68)Ga-DOTATATE possess similar diagnostic accuracy for detection of gastroenteropancreatic NET lesions (with a potential advantage of (68)Ga-DOTATOC) despite their evident difference in affinity for sst2. Quite unexpectedly, maximal uptake of (68)Ga-DOTATOC tended to be higher than its (68)Ga-DOTATATE counterpart. However, tumor uptake shows high inter- and intraindividual variance with unpredictable preference of one radiopeptide. Thus, our data encourage the application of different sst ligands to enable personalized imaging and therapy of gastroenteropancreatic NET with optimal targeting of tumor receptors
Teacher evaluation in the Kingdom of Saudi Arabia's (KSA) schools - moving forward
The aim of this optimization study was to minimize the acquisition time of 68Ga-HBED-CC-PSMA positron emission tomography/magnetic resonance imaging (PET/MRI) in patients with local and metastatic prostate cancer (PCa) to obtain a sufficient image quality and quantification accuracy without any appreciable loss.Twenty patients with PCa were administered intravenously with the 68Ga-HBED-CC-PSMA ligand (mean activity 99 MBq/patient, range 76-148 MBq) and subsequently underwent PET/MRI at, on average, 168 min (range 77-320 min) after injection. PET and MR imaging data were acquired simultaneously. PET acquisition was performed in list mode and PET images were reconstructed at different time intervals (1, 2, 4, 6, 8, and 10 min). Data were analyzed regarding radiotracer uptake in tumors and muscle tissue and PET image quality. Tumor uptake was quantified in terms of the maximum and mean standardized uptake value (SUVmax, SUVmean) within a spherical volume of interest (VOI). Reference VOIs were drawn in the gluteus maximus muscle on the right side. PET image quality was evaluated by experienced nuclear physicians/radiologists using a five-point ordinal scale from 5-1 (excellent-insufficient).Lesion detectability linearly increased with increasing acquisition times, reaching its maximum at PET acquisition times of 4 min. At this image acquisition time, tumor lesions in 19/20 (95%) patients were detected. PET image quality showed a positive correlation with increasing acquisition time, reaching a plateau at 4-6 min image acquisition. Both SUVmax and SUVmean correlated inversely with acquisition time and reached a plateau at acquisition times after 4 min.In the applied image acquisition settings, the optimal acquisition time of 68Ga-PSMA-ligand PET/MRI in patients with local and metastatic PCa was identified to be 4 min per bed position. At this acquisition time, PET image quality and lesion detectability reach a maximum while SUVmax and SUVmean do not change significantly beyond this time point
68Ga-DOTATOC PET/CT and somatostatin receptor (sst1-sst5) expression in normal human tissue: correlation of sst2 mRNA and SUVmax
By targeting somatostatin receptors (sst) radiopeptides have been established for both diagnosis and therapy. For physiologically normal human tissues the study provides a normative database of maximum standardized uptake value (SUV(max)) and sst mRNA
Simultaneous 11C-Methionine Positron Emission Tomography/Magnetic Resonance Imaging of Suspected Primary Brain Tumors.
The objective of this study was to assess the diagnostic value of integrated 11C- methionine PET/MRI for suspected primary brain tumors, in comparison to MRI alone.Forty-eight consecutive patients with suspected primary brain tumor were prospectively enrolled for an integrated 11C-methionine PET/MRI. Two neuro-radiologists separately evaluated the MRI alone and the integrated PET/MRI data sets regarding most likely diagnosis and diagnostic confidence on a 5-point scale. Reference standard was histopathology or follow-up imaging.Fifty-one suspicious lesions were detected: 16 high-grade glioma and 25 low-grade glioma. Ten non-malignant cerebral lesions were described by the reference standard. MRI alone and integrated PET/MRI each correctly classified 42 of the 51 lesions (82.4%) as neoplastic lesions (WHO grade II, III and IV) or non-malignant lesions (infectious and neoplastic lesions). Diagnostic confidence for all lesions, low-grade astrocytoma and high-grade astrocytoma (3.7 vs. 4.2, 3,1 vs. 3.8, 4.0 vs. 4,7) were significantly (p < 0.05) better with integrated PET/MRI than in MRI alone.The present study demonstrates the high potential of integrated 11C-methionine-PET/MRI for the assessment of suspected primary brain tumors. Although integrated methionine PET/MRI does not lead to an improvement of correct diagnoses, diagnostic confidence is significantly improved