6,493 research outputs found
Algorithms for 3D rigidity analysis and a first order percolation transition
A fast computer algorithm, the pebble game, has been used successfully to
study rigidity percolation on 2D elastic networks, as well as on a special
class of 3D networks, the bond-bending networks. Application of the pebble game
approach to general 3D networks has been hindered by the fact that the
underlying mathematical theory is, strictly speaking, invalid in this case. We
construct an approximate pebble game algorithm for general 3D networks, as well
as a slower but exact algorithm, the relaxation algorithm, that we use for
testing the new pebble game. Based on the results of these tests and additional
considerations, we argue that in the particular case of randomly diluted
central-force networks on BCC and FCC lattices, the pebble game is essentially
exact. Using the pebble game, we observe an extremely sharp jump in the largest
rigid cluster size in bond-diluted central-force networks in 3D, with the
percolating cluster appearing and taking up most of the network after a single
bond addition. This strongly suggests a first order rigidity percolation
transition, which is in contrast to the second order transitions found
previously for the 2D central-force and 3D bond-bending networks. While a first
order rigidity transition has been observed for Bethe lattices and networks
with ``chemical order'', this is the first time it has been seen for a regular
randomly diluted network. In the case of site dilution, the transition is also
first order for BCC, but results for FCC suggest a second order transition.
Even in bond-diluted lattices, while the transition appears massively first
order in the order parameter (the percolating cluster size), it is continuous
in the elastic moduli. This, and the apparent non-universality, make this phase
transition highly unusual.Comment: 28 pages, 19 figure
Self-organization with equilibration: a model for the intermediate phase in rigidity percolation
Recent experimental results for covalent glasses suggest the existence of an
intermediate phase attributed to the self-organization of the glass network
resulting from the tendency to minimize its internal stress. However, the exact
nature of this experimentally measured phase remains unclear. We modify a
previously proposed model of self-organization by generating a uniform sampling
of stress-free networks. In our model, studied on a diluted triangular lattice,
an unusual intermediate phase appears, in which both rigid and floppy networks
have a chance to occur, a result also observed in a related model on a Bethe
lattice by Barre et al. [Phys. Rev. Lett. 94, 208701 (2005)]. Our results for
the bond-configurational entropy of self-organized networks, which turns out to
be only about 2% lower than that of random networks, suggest that a
self-organized intermediate phase could be common in systems near the rigidity
percolation threshold.Comment: 9 pages, 6 figure
Relativistic and slowing down: the flow in the hotspots of powerful radio galaxies and quasars
Pairs of radio emitting jets with lengths up to several hundred kiloparsecs
emanate from the central region (the `core') of radio loud active galaxies.
In the most powerful of them, these jets terminate in the `hotspots', compact
high brightness regions, where the jet flow collides with the intergalactic
medium (IGM). Although it has long been established that in their inner
(parsec) regions these jet flows are relativistic, it is still not clear
if they remain so at their largest (hundreds of kiloparsec) scales. We argue
that the X-ray, optical and radio data of the hotspots, despite their
at-first-sight disparate properties, can be unified in a scheme involving a
relativistic flow upstream of the hotspot that decelerates to the
sub-relativistic speed of its inferred advance through the IGM and viewed at
different angles to its direction of motion. This scheme, besides providing an
account of the hotspot spectral properties with jet orientation, it also
suggests that the large-scale jets remain relativistic all the way to the
hotspots.Comment: to appear in ApJ
Floppy modes and the free energy: Rigidity and connectivity percolation on Bethe Lattices
We show that negative of the number of floppy modes behaves as a free energy
for both connectivity and rigidity percolation, and we illustrate this result
using Bethe lattices. The rigidity transition on Bethe lattices is found to be
first order at a bond concentration close to that predicted by Maxwell
constraint counting. We calculate the probability of a bond being on the
infinite cluster and also on the overconstrained part of the infinite cluster,
and show how a specific heat can be defined as the second derivative of the
free energy. We demonstrate that the Bethe lattice solution is equivalent to
that of the random bond model, where points are joined randomly (with equal
probability at all length scales) to have a given coordination, and then
subsequently bonds are randomly removed.Comment: RevTeX 11 pages + epsfig embedded figures. Submitted to Phys. Rev.
Variation of the glass transition temperature with rigidity and chemical composition
The effects of flexibility and chemical composition in the variation of the
glass transition temperature are obtained by using the Lindemann criteria, that
relates melting temperature with atomic vibrations. Using this criteria and
that floppy modes at low frequencies enhance in a considerable way the average
cuadratic displacement, we show that the consequence is a modified glass
transition temperature. This approach allows to obtain in a simple way the
empirically modified Gibbs-DiMarzio law, which has been widely used in
chalcogenide glasses to fit the changes in the glass transition temperature
with the chemical composition . The method predicts that the constant that
appears in the law depends upon the ratio of two characteristic frequencies (or
temperatures). Then, the constant for the Se-Ge-As glass is estimated by using
the experimental density of vibrational states, and the result shows a very
good agreement with the experimental fit from glass transition temperature
variation
Time Domain Simulations of Arm Locking in LISA
Arm locking is a technique that has been proposed for reducing laser
frequency fluctuations in the Laser Interferometer Space Antenna (LISA), a
gravitational-wave observatory sensitive in the milliHertz frequency band. Arm
locking takes advantage of the geometric stability of the triangular
constellation of three spacecraft that comprise LISA to provide a frequency
reference with a stability in the LISA measurement band that exceeds that
available from a standard reference such as an optical cavity or molecular
absorption line. We have implemented a time-domain simulation of arm locking
including the expected limiting noise sources (shot noise, clock noise,
spacecraft jitter noise, and residual laser frequency noise). The effect of
imperfect a priori knowledge of the LISA heterodyne frequencies and the
associated 'pulling' of an arm locked laser is included. We find that our
implementation meets requirements both on the noise and dynamic range of the
laser frequency.Comment: Revised to address reviewer comments. Accepted by Phys. Rev.
Phase Functions and Light Curves of Wide Separation Extrasolar Giant Planets
We calculate self-consistent extrasolar giant planet (EGP) phase functions
and light curves for orbital distances ranging from 0.2 AU to 15 AU. We explore
the dependence on wavelength, cloud condensation, and Keplerian orbital
elements. We find that the light curves of EGPs depend strongly on wavelength,
the presence of clouds, and cloud particle sizes. Furthermore, the optical and
infrared colors of most EGPs are phase-dependent, tending to be reddest at
crescent phases in and . Assuming circular orbits, we find that at
optical wavelengths most EGPs are 3 to 4 times brighter near full phase than
near greatest elongation for highly-inclined (i.e., close to edge-on) orbits.
Furthermore, we show that the planet/star flux ratios depend strongly on the
Keplerian elements of the orbit, particularly inclination and eccentricity.
Given a sufficiently eccentric orbit, an EGP's atmosphere may make periodic
transitions from cloudy to cloud-free, an effect that may be reflected in the
shape and magnitude of the planet's light curve. Such elliptical orbits also
introduce an offset between the time of the planet's light curve maximum and
the time of full planetary phase, and for some sets of orbital parameters, this
light curve maximum can be a steeply increasing function of eccentricity. We
investigate the detectability of EGPs by proposed space-based direct-imaging
instruments.Comment: submitted to Astrophysical Journa
Charge-Focusing Readout of Time Projection Chambers
Time projection chambers (TPCs) have found a wide range of applications in
particle physics, nuclear physics, and homeland security. For TPCs with
high-resolution readout, the readout electronics often dominate the price of
the final detector. We have developed a novel method which could be used to
build large-scale detectors while limiting the necessary readout area. By
focusing the drift charge with static electric fields, we would allow a small
area of electronics to be sensitive to particle detection for a much larger
detector volume. The resulting cost reduction could be important in areas of
research which demand large-scale detectors, including dark matter searches and
detection of special nuclear material. We present simulations made using the
software package Garfield of a focusing structure to be used with a prototype
TPC with pixel readout. This design should enable significant focusing while
retaining directional sensitivity to incoming particles. We also present first
experimental results and compare them with simulation.Comment: 5 pages, 17 figures, Presented at IEEE Nuclear Science Symposium 201
- …