7,515 research outputs found

    Extremely Anisotropic Scintillations

    Get PDF
    A small number of quasars exhibit interstellar scintillation on time-scales less than an hour; their scintillation patterns are all known to be anisotropic. Here we consider a totally anisotropic model in which the scintillation pattern is effectively one-dimensional. For the persistent rapid scintillators J1819+3845 and PKS1257-326 we show that this model offers a good description of the two-station time-delay measurements and the annual cycle in the scintillation time-scale. Generalising the model to finite anisotropy yields a better match to the data but the improvement is not significant and the two additional parameters which are required to describe this model are not justified by the existing data. The extreme anisotropy we infer for the scintillation patterns must be attributed to the scattering medium rather than a highly elongated source. For J1819+3845 the totally anisotropic model predicts that the particular radio flux variations seen between mid July and late August should repeat between late August and mid November, and then again between mid November and late December as the Earth twice changes its direction of motion across the scintillation pattern. If this effect can be observed then the minor-axis velocity component of the screen and the orientation of that axis can both be precisely determined. In reality the axis ratio is finite, albeit large, and spatial decorrelation of the flux pattern along the major axis may be observable via differences in the pairwise fluxes within this overlap region; in this case we can also constrain both the major-axis velocity component of the screen and the magnitude of the anisotropy.Comment: 5 pages, 4 figures, MNRAS submitte

    Self-organization with equilibration: a model for the intermediate phase in rigidity percolation

    Full text link
    Recent experimental results for covalent glasses suggest the existence of an intermediate phase attributed to the self-organization of the glass network resulting from the tendency to minimize its internal stress. However, the exact nature of this experimentally measured phase remains unclear. We modify a previously proposed model of self-organization by generating a uniform sampling of stress-free networks. In our model, studied on a diluted triangular lattice, an unusual intermediate phase appears, in which both rigid and floppy networks have a chance to occur, a result also observed in a related model on a Bethe lattice by Barre et al. [Phys. Rev. Lett. 94, 208701 (2005)]. Our results for the bond-configurational entropy of self-organized networks, which turns out to be only about 2% lower than that of random networks, suggest that a self-organized intermediate phase could be common in systems near the rigidity percolation threshold.Comment: 9 pages, 6 figure

    Self-organized criticality in the intermediate phase of rigidity percolation

    Full text link
    Experimental results for covalent glasses have highlighted the existence of a new self-organized phase due to the tendency of glass networks to minimize internal stress. Recently, we have shown that an equilibrated self-organized two-dimensional lattice-based model also possesses an intermediate phase in which a percolating rigid cluster exists with a probability between zero and one, depending on the average coordination of the network. In this paper, we study the properties of this intermediate phase in more detail. We find that microscopic perturbations, such as the addition or removal of a single bond, can affect the rigidity of macroscopic regions of the network, in particular, creating or destroying percolation. This, together with a power-law distribution of rigid cluster sizes, suggests that the system is maintained in a critical state on the rigid/floppy boundary throughout the intermediate phase, a behavior similar to self-organized criticality, but, remarkably, in a thermodynamically equilibrated state. The distinction between percolating and non-percolating networks appears physically meaningless, even though the percolating cluster, when it exists, takes up a finite fraction of the network. We point out both similarities and differences between the intermediate phase and the critical point of ordinary percolation models without self-organization. Our results are consistent with an interpretation of recent experiments on the pressure dependence of Raman frequencies in chalcogenide glasses in terms of network homogeneity.Comment: 20 pages, 18 figure

    Pentagonal puckering in a sheet of amorphous graphene

    Full text link
    Ordered graphene has been extensively studied. In this paper we undertake a first density functional study of it topologically disordered analogues of graphene, in the form of a random network, consisting predominantly of hexagonal rings, but also including pentagons and heptagons. After some preliminaries with crystalline material, we relax various random network models and find that the presence of carbon pentagons induce local curvature, thus breaking the initial planar symmetry, in some analogy with the case of fullerenes. Using density functional theory to calculate the total energy, we find that while the planar state is locally stable, there is a puckered state that has lower energy. The scale of the puckering is consistent with that expected with local maxima and minima associated with pentagons surrounded by larger rings; forming local "buckyball domes"

    Preliminary ultraviolet reflectance of some rocks and minerals from 2000 angstrom to 3000 angstrom

    Get PDF
    Ultraviolet reflectance measurements of rocks and minerals from 2000 A to 3000

    Relativistic and slowing down: the flow in the hotspots of powerful radio galaxies and quasars

    Full text link
    Pairs of radio emitting jets with lengths up to several hundred kiloparsecs emanate from the central region (the `core') of radio loud active galaxies. In the most powerful of them, these jets terminate in the `hotspots', compact high brightness regions, where the jet flow collides with the intergalactic medium (IGM). Although it has long been established that in their inner (∼\simparsec) regions these jet flows are relativistic, it is still not clear if they remain so at their largest (hundreds of kiloparsec) scales. We argue that the X-ray, optical and radio data of the hotspots, despite their at-first-sight disparate properties, can be unified in a scheme involving a relativistic flow upstream of the hotspot that decelerates to the sub-relativistic speed of its inferred advance through the IGM and viewed at different angles to its direction of motion. This scheme, besides providing an account of the hotspot spectral properties with jet orientation, it also suggests that the large-scale jets remain relativistic all the way to the hotspots.Comment: to appear in ApJ

    Stressed backbone and elasticity of random central-force systems

    Full text link
    We use a new algorithm to find the stress-carrying backbone of ``generic'' site-diluted triangular lattices of up to 10^6 sites. Generic lattices can be made by randomly displacing the sites of a regular lattice. The percolation threshold is Pc=0.6975 +/- 0.0003, the correlation length exponent \nu =1.16 +/- 0.03 and the fractal dimension of the backbone Db=1.78 +/- 0.02. The number of ``critical bonds'' (if you remove them rigidity is lost) on the backbone scales as L^{x}, with x=0.85 +/- 0.05. The Young's modulus is also calculated.Comment: 5 pages, 5 figures, uses epsfi
    • …
    corecore