198 research outputs found

    Is there an association between depressive and urinary symptoms during and after pregnancy?

    Get PDF
    Depressive symptoms and urinary symptoms are both highly prevalent in pregnancy. In the general population, an association is reported between urinary symptoms and depressive symptoms. The association of depressive and urinary symptoms has not yet been assessed in pregnancy. In this study, we assessed (1) the prevalence of depressive symptoms, over-active bladder (OAB) syndrome, urge urinary incontinence (UUI) and stress urinary incontinence (SUI) during and after pregnancy using the Center for Epidemiologic Studies Depression Scale (CES-D) and the Urogenital Distress Inventory (UDI) and (2) the association of depressive symptoms with urinary incontinence and over-active bladder syndrome during and after pregnancy, controlling for confounding socioeconomic, psychosocial, behavioural and biomedical factors in a cohort of healthy nulliparous women. Our data show a significant increase in prevalence of depressive symptoms, UUI, SUI and OAB during pregnancy and a significant reduction in prevalence of depressive symptoms, SUI and OAB after childbirth. UUI prevalence did not significantly decrease after childbirth. In univariate analysis, urinary incontinence and the OAB syndrome were significantly associated with a CES-D score indicative of a possible clinical depression at 36 weeks gestation. However, after adjusting for possible confounding factors, only the OAB syndrome remained significantly associated (OR 4.4 [1.8–10.5]). No association was found between depressive and urinary symptoms at 1 year post-partum. Only OAB was independently associated with depressive symptoms during pregnancy. Possible explanations for this association are discussed

    Distinct Cytoplasmic and Nuclear Functions of the Stress Induced Protein DDIT3/CHOP/GADD153

    Get PDF
    DDIT3, also known as GADD153 or CHOP, encodes a basic leucine zipper transcription factor of the dimer forming C/EBP family. DDIT3 is known as a key regulator of cellular stress response, but its target genes and functions are not well characterized. Here, we applied a genome wide microarray based expression analysis to identify DDIT3 target genes and functions. By analyzing cells carrying tamoxifen inducible DDIT3 expression constructs we show distinct gene expression profiles for cells with cytoplasmic and nuclear localized DDIT3. Of 175 target genes identified only 3 were regulated by DDIT3 in both cellular localizations. More than two thirds of the genes were downregulated, supporting a role for DDIT3 as a dominant negative factor that could act by either cytoplasmic or nuclear sequestration of dimer forming transcription factor partners. Functional annotation of target genes showed cell migration, proliferation and apoptosis/survival as the most affected categories. Cytoplasmic DDIT3 affected more migration associated genes, while nuclear DDIT3 regulated more cell cycle controlling genes. Cell culture experiments confirmed that cytoplasmic DDIT3 inhibited migration, while nuclear DDIT3 caused a G1 cell cycle arrest. Promoters of target genes showed no common sequence motifs, reflecting that DDIT3 forms heterodimers with several alternative transcription factors that bind to different motifs. We conclude that expression of cytoplasmic DDIT3 regulated 94 genes. Nuclear translocation of DDIT3 regulated 81 additional genes linked to functions already affected by cytoplasmic DDIT3. Characterization of DDIT3 regulated functions helps understanding its role in stress response and involvement in cancer and degenerative disorders

    Indicators of river system hydromorphological character and dynamics: understanding current conditions and guiding sustainable river management

    Get PDF
    The work leading to this paper received funding from the EU’s FP7 programme under Grant Agreement No. 282656 (REFORM). The Indicators were developed within the context of REFORM deliverable D2.1, therefore all partners involved in this deliverable contributed to some extent to their discussion and development

    Oxidative stress in the developing brain: effects of postnatal glucocorticoid therapy and antioxidants in the rat.

    Get PDF
    In premature infants, glucocorticoids ameliorate chronic lung disease, but have adverse effects on long-term neurological function. Glucocorticoid excess promotes free radical overproduction. We hypothesised that the adverse effects of postnatal glucocorticoid therapy on the developing brain are secondary to oxidative stress and that antioxidant treatment would diminish unwanted effects. Male rat pups received a clinically-relevant tapering course of dexamethasone (DEX; 0.5, 0.3, and 0.1 mg x kg(-1) x day(-1)), with or without antioxidant vitamins C and E (DEXCE; 200 mg x kg(-1) x day(-1) and 100 mg x kg(-1) x day(-1), respectively), on postnatal days 1-6 (P1-6). Controls received saline or saline with vitamins. At weaning, relative to controls, DEX decreased total brain volume (704.4±34.7 mm(3) vs. 564.0±20.0 mm(3)), the soma volume of neurons in the CA1 (1172.6±30.4 ”m(3) vs. 1002.4±11.8 ”m(3)) and in the dentate gyrus (525.9±27.2 ”m(3) vs. 421.5±24.6 ”m(3)) of the hippocampus, and induced oxidative stress in the cortex (protein expression: heat shock protein 70 [Hsp70]: +68%; 4-hydroxynonenal [4-HNE]: +118% and nitrotyrosine [NT]: +20%). Dexamethasone in combination with vitamins resulted in improvements in total brain volume (637.5±43.1 mm(3)), and soma volume of neurons in the CA1 (1157.5±42.4 ”m(3)) and the dentate gyrus (536.1±27.2 ”m(3)). Hsp70 protein expression was unaltered in the cortex (+9%), however, 4-HNE (+95%) and NT (+24%) protein expression remained upregulated. Treatment of neonates with vitamins alone induced oxidative stress in the cortex (Hsp70: +67%; 4-HNE: +73%; NT: +22%) and in the hippocampus (NT: +35%). Combined glucocorticoid and antioxidant therapy in premature infants may be safer for the developing brain than glucocorticoids alone in the treatment of chronic lung disease. However, antioxidant therapy in healthy offspring is not recommended

    ICAR: endoscopic skull‐base surgery

    Get PDF
    n/

    Coronavirus Cell Entry Occurs through the Endo-/Lysosomal Pathway in a Proteolysis-Dependent Manner

    Get PDF
    Enveloped viruses need to fuse with a host cell membrane in order to deliver their genome into the host cell. While some viruses fuse with the plasma membrane, many viruses are endocytosed prior to fusion. Specific cues in the endosomal microenvironment induce conformational changes in the viral fusion proteins leading to viral and host membrane fusion. In the present study we investigated the entry of coronaviruses (CoVs). Using siRNA gene silencing, we found that proteins known to be important for late endosomal maturation and endosome-lysosome fusion profoundly promote infection of cells with mouse hepatitis coronavirus (MHV). Using recombinant MHVs expressing reporter genes as well as a novel, replication-independent fusion assay we confirmed the importance of clathrin-mediated endocytosis and demonstrated that trafficking of MHV to lysosomes is required for fusion and productive entry to occur. Nevertheless, MHV was shown to be less sensitive to perturbation of endosomal pH than vesicular stomatitis virus and influenza A virus, which fuse in early and late endosomes, respectively. Our results indicate that entry of MHV depends on proteolytic processing of its fusion protein S by lysosomal proteases. Fusion of MHV was severely inhibited by a pan-lysosomal protease inhibitor, while trafficking of MHV to lysosomes and processing by lysosomal proteases was no longer required when a furin cleavage site was introduced in the S protein immediately upstream of the fusion peptide. Also entry of feline CoV was shown to depend on trafficking to lysosomes and processing by lysosomal proteases. In contrast, MERS-CoV, which contains a minimal furin cleavage site just upstream of the fusion peptide, was negatively affected by inhibition of furin, but not of lysosomal proteases. We conclude that a proteolytic cleavage site in the CoV S protein directly upstream of the fusion peptide is an essential determinant of the intracellular site of fusion

    The hyporheic zone and its functions: revision and research status in Neotropical regions

    Full text link

    The composition and stability of the vaginal microbiota of normal pregnant women is different from that of non-pregnant women

    Full text link
    • 

    corecore