812 research outputs found

    Pediatric endocrine society survey of diabetes practices in the United States: What is the current state?

    Full text link
    Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/144633/1/pedi12677.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/144633/2/pedi12677_am.pd

    Classifying livestock production systems for targeting agricultural research and development in a rapidly changing world

    Get PDF
    A myriad of agricultural and livestock production systems co-exist in the developing countries. Agricultural research for development should therefore aim at delivering strategies that are well targeted to the heterogeneous landscapes and diverse biophysical and socioeconomic contexts the agricultural production system is operating in. To that end, in the recent past several approaches to spatially delineate landscapes with broadly similar production strategies, constraints and investment opportunities, have been applied. The mapped Seré and Steinfeld livestock production classification, for example, has been widely used for the targeting of pro-poor livestock intervention within ILRI. In this paper we describe potential methodologies for the inclusion of crop-specificity and intensification in the existing Seré and Steinfeld livestock systems classification. We also present some first broad-brush future projections of these detailed crop-livestock production systems. A number of example applications are discussed and recommendations for future improvement and use are made. While the production system classifications are especially useful for bio-physical applications such as livestock-environment interactions and feed assessments, the links with socioeconomic factors still need to be explored further. Also, it is only one of the necessary building blocks for better targeting of research and development efforts. We, however,believe that the proposed system classifications will be of use to a variety of agricultural and livestock scientists and development agents alike. In addition, they serve as practical examples making the case for the use of spatial stratification when targeting agricultural research and development

    Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) signaling and cell death in the immature central nervous system after hypoxia-ischemia and inflammation

    Get PDF
    Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a member of the TNF family. The interaction of TRAIL with death receptor 4 (DR4) and DR5 can trigger apoptotic cell death. The aim of this study was to investigate the role of TRAIL signaling in neonatal hypoxia-ischemia (HI). Using a neonatal mouse model of HI, mRNA, and protein expression of TRAIL, DR5 and the TRAIL decoy receptors osteoprotegerin (OPG), mDcTRAILR1, and mDcTRAILR2 were determined. In vitro, mRNA expression of these genes was measured in primary neurons and oligodendrocyte progenitor cells (OPCs) after inflammatory cytokine (TNF-α/IFN-γ) treatment and/or oxygen and glucose deprivation (OGD). The toxicity of these various paradigms was also measured. The expression of TRAIL, DR5, OPG, and mDcTRAILR2 was significantly increased after HI. In vitro, inflammatory cytokines and OGD treatment significantly induced mRNAs for TRAIL, DR5, OPG, and mDcTRAILR2 in primary neurons and of TRAIL and OPG in OPCs. TRAIL protein was expressed primarily in microglia and astroglia, whereas DR5 co-localized with neurons and OPCs in vivo. OGD enhanced TNF-α/IFN-γ toxicity in both neuronal and OPC cultures. Recombinant TRAIL exerted toxicity alone or in combination with OGD and TNF-α/IFN-γ in primary neurons but not in OPC cultures. The marked increases in the expression of TRAIL and its receptors after cytokine exposure and OGD in primary neurons and OPCs were similar to those found in our animal model of neonatal HI. The toxicity of TRAIL in primary neurons suggests that TRAIL signaling participates in neonatal brain injury after inflammation and HI

    Frictionless bead packs have macroscopic friction, but no dilatancy

    Get PDF
    The statement of the title is shown by numerical simulation of homogeneously sheared packings of frictionless, nearly rigid beads in the quasistatic limit. Results coincide for steady flows at constant shear rate γ in the limit of small γ and static approaches, in which packings are equilibrated under growing deviator stresses. The internal friction angle ϕ, equal to 5.76 ±\pm 0.22 degrees in simple shear, is independent on the average pressure P in the rigid limit. It is shown to stem from the ability of stable frictionless contact networks to form stress-induced anisotropic fabrics. No enduring strain localization is observed. Dissipation at the macroscopic level results from repeated network rearrangements, like the effective friction of a frictionless slider on a bumpy surface. Solid fraction Φ remains equal to the random close packing value ≃ 0.64 in slowly or statically sheared systems. Fluctuations of stresses and volume are observed to regress in the large system limit, and we conclude that the same friction law for simple shear applies in the large psystem limit if normal stress or density is externally controlled. Defining the inertia number as I = γ m/(aP), with m the grain mass and a its diameter, both internal friction coefficient ÎŒ\mu∗ = tan ϕ and volume 1/Φ increase as powers of I in the quasistatic limit of vanishing I, in which all mechanical properties are determined by contact network geometry. The microstructure of the sheared material is characterized with a suitable parametrization of the fabric tensor and measurements of connectivity and coordination numbers associated with contacts and near neighbors.Comment: 19 pages. Additional technical details may be found in v

    Internal states of model isotropic granular packings. III. Elastic properties

    Get PDF
    In this third and final paper of a series, elastic properties of numerically simulated isotropic packings of spherical beads assembled by different procedures and subjected to a varying confining pressure P are investigated. In addition P, which determines the stiffness of contacts by Hertz's law, elastic moduli are chiefly sensitive to the coordination number, the possible values of which are not necessarily correlated with the density. Comparisons of numerical and experimental results for glass beads in the 10kPa-10MPa range reveal similar differences between dry samples compacted by vibrations and lubricated packings. The greater stiffness of the latter, in spite of their lower density, can hence be attributed to a larger coordination number. Voigt and Reuss bounds bracket bulk modulus B accurately, but simple estimation schemes fail for shear modulus G, especially in poorly coordinated configurations under low P. Tenuous, fragile networks respond differently to changes in load direction, as compared to load intensity. The shear modulus, in poorly coordinated packings, tends to vary proportionally to the degree of force indeterminacy per unit volume. The elastic range extends to small strain intervals, in agreement with experimental observations. The origins of nonelastic response are discussed. We conclude that elastic moduli provide access to mechanically important information about coordination numbers, which escape direct measurement techniques, and indicate further perspectives.Comment: Published in Physical Review E 25 page

    Solid behavior of anisotropic rigid frictionless bead assemblies

    Get PDF
    We investigate the structure and mechanical behavior of assemblies of frictionless, nearly rigid equal-sized beads, in the quasistatic limit, by numerical simulation. Three different loading paths are explored: triaxial compression, triaxial extension and simple shear. Generalizing recent results [1], we show that the material, despite rather strong finite sample size effects, is able to sustain a finite deviator stress in the macroscopic limit, along all three paths, without dilatancy. The shape of the yield surface is adequately described by a Lade-Duncan (rather than Mohr-Coulomb) criterion. While scalar state variables keep the same values as in isotropic systems, fabric and force anisotropies are each characterized by one parameter and are in one-to-one correspondence with principal stress ratio along all three loading paths.The anisotropy of the pair correlation function extends to a distance between bead surfaces on the order of 10% of the diameter. The tensor of elastic moduli is shown to possess a nearly singular, uniaxial structure related to stress anisotropy. Possible stress-strain relations in monotonic loading paths are also discussed
    • 

    corecore