9,540 research outputs found

    Integrated thermal-structural analysis of large space structures

    Get PDF
    Optimum performance of large space antennas requires very fine control of the shape of the antenna surface since the shape affects both frequency control and pointing accuracy. A significant factor affecting the antenna shape is the temperature of the structure and the resulting deformation. To accurately predict the temperature of the structure, it is necessary first to accurately predict thermal loads. As the structure orbits the Earth, the thermal loads change constantly so that the thermal-structural response varies continuously throughout the orbit. The results from recent applications of integrated finite element methodology to heat load determination and thermal-structural analysis of large space structures are given. Four areas are concentrated on: (1) the characteristics of the integrated finite element methodology, (2) fundamentals of orbital heat load calculation, (3) description and comparison of some radiation finite elements, and (4) application of the integrated finite-element approach to the thermal-structural analysis of an orbiting truss structure

    Finite element thermal-structural modeling of orbiting truss structures

    Get PDF
    A description of an integrated finite element (FE) thermal-structural approach for accurate and efficient modeling of large space structures is presented. A geometric model with a common discretization for all analyses is employed. It uses improved thermal elements and the results from the thermal analysis directly in the structural analysis without any intervening data processing. The differences between the conventional FE approach as implemented in large programs and an integrated FE approach currently under development are described. Considerations for thermal modeling of truss members is discussed and three thermal truss finite elements are presented. The performance of these elements was evaluated for typical truss members neglecting joint effects. A simple truss with metallic joints and composite members was studied to evaluate the effectiveness of the approach for realistic truss designs. A study of the effects of aluminum joints on the thermal deformations of a simple, plane truss with composite members showed that joint effects may be significant. Further study is needed to assess the role of joint effects on the deformation of large trusses

    Flutter: A finite element program for aerodynamic instability analysis of general shells of revolution with thermal prestress

    Get PDF
    Documentation for the computer program FLUTTER is presented. The theory of aerodynamic instability with thermal prestress is discussed. Theoretical aspects of the finite element matrices required in the aerodynamic instability analysis are also discussed. General organization of the computer program is explained, and instructions are then presented for the execution of the program

    Anthropometric changes and fluid shifts

    Get PDF
    Several observations of body size, shape, posture, and configuration were made to document changes resulting from direct effects of weightlessness during the Skylab 4 mission. After the crewmen were placed in orbit, a number of anatomical and anthropometric changes occurred including a straightening of the thoracolumbar spine, a general decrease in truncal girth, and an increase in height. By the time of the earliest in-flight measurement on mission day 3, all crewmen had lost more than two liters of extravascular fluid from the calf and thigh. The puffy facies, the bird legs effect, the engorgement of upper body veins, and the reduced volume of lower body veins were all documented with photographs. Center-of-mass measurements confirmed a fluid shift cephalad. This shift remained throughout the mission until recovery, when a sharp reversal occurred; a major portion of the reversal was completed in a few hours. The anatomical changes are of considerable scientific interest and of import to the human factors design engineer, but the shifts of blood and extravascular fluid are of more consequence. It is hypothesized that the driving force for the fluid shift is the intrinsic and unopposed lower limb elasticity that forces venous blood and then other fluid cephalad

    Australian rock coasts : review and prospects

    Full text link
    Studies of Australian rock coasts (except carbonate reefs) are reviewed and considered in view of recent process and morphological studies. The unique nature of the Australian coast, its geographical distribution and relative stability mean that it is a productive environment in which to research fundamental questions concerning rock coasts. Future research directions are identified, specifically in the areas of processes, morphology and modelling. <br /

    Visual suppression of the vestibulo-ocular reflex during space flight

    Get PDF
    Visual suppression of the vestibulo-ocular reflex was studied in 16 subjects on 4 Space Shuttle missions. Eye movements were recorded by electro-oculography while subjects fixated a head mounted target during active sinusoidal head oscillation at 0.3 Hz. Adequacy of suppression was evaluated by the number of nystagmus beats, the mean amplitude of each beat, and the cumulative amplitude of nystagmus during two head oscillation cycles. Vestibulo-ocular reflex suppression was unaffected by space flight. Subjects with space motion sickness during flight had significantly more nystagmus beats than unaffected individuals. These susceptible subjects also tended to have more nystagmus beats before flight

    Eye and head motion during head turns in spaceflight

    Get PDF
    Eye-head motion was studied pre-, in- and postflight during single voluntary head turns. A transient increase in vestibulo-ocular reflex (VOR) gain occurred early in the flight, but later trended toward normal. This increased gain was produced by a relative increase in eye counterrotation velocity. Asymmetries in gain with right and left turns also occurred, caused by asymmetries in eye counterrotation velocities. These findings were remarkably similar to those from Soviet primate studies using gaze fixation targets, except the human study trended more rapidly toward normal. These findings differ substantially from those measuring VOR gain by head oscillation, in which no significant changes were found inflight. No visual disturbances were noted in either test condition or in normal activities. These head turn studies are the only ones to date documenting any functional change in VOR in weightlessness

    Studies of the vestibulo-ocular reflex on STS 4, 5 and 6

    Get PDF
    The vestibulo-ocular reflex (VOR) may be altered by weightlessness. Since this reflex plays a large role in visual stabilization, it was important to document any changes caused by space flight. This is a report on findings on STS-4 through 6 and is part of a larger study of neurosensory adaptation done on STS-4 through 8. Voluntary horizontal head oscillations at 1/3 Hz with amplitude of 30 deg right and left of center were recorded by a potentiometer and compared to eye position recorded by electroculography under the following conditions: eyes open, head fixed, tracking horizontal targets switched 0, 15, and 30 degrees right and left (optokinetic reflex - OKR - and calibration); eyes open and fixed on static external target with oscillation, (vestibulo ocular reflex, eyes closed - VOR EC); eyes open and wearing opaque goggles with target fixed in imagination (vestibulo-ocular reflex, eyes shaded - VOR ES); and eyes open and fixed on a head synchronized target with head oscillation (VOR suppression). No significant changes were found in voluntary head oscillation frequency or amplitude in those with (n=5), and without (n=3), space motion sickness (SMS), with phase of flight or test condition. Variations in head oscillation were too small to have produced detectable changes in test results

    Studies of the horizontal vestibulo-ocular reflex on STS 7 and 8

    Get PDF
    Unpaced voluntary horizontal head oscillation was used to study the Vestibulo-Ocular Reflex (VOR) on Shuttle flights STS 7 and 8. Ten subjects performed head oscillations at 0.33 Hz + or - 30 deg amplitude under the followng conditions: VVOR (visual VOR), eyes open and fixed on a stationary target; VOR-EC, with eyes closed and fixed on the same target in imagination; and VOR-S (VOR suppression), with eyes open and fixed on a head-synchronized target. Effects of weightlessness, flight phase, and Space Motion Sickness (SMS) on head oscillation characteristics were examined. A significant increase in head oscillation frequency was noted inflight in subjects free from SMS. In subjects susceptible to SMS, frequency was reduced during their Symptomatic period. The data also suggest that the amplitude and peak velocity of head oscillation were reduced early inflight. No significant changes were noted in reflex gain or phase in any of the test conditions; however, there was a suggestion of an increase in VVOR and VOR-ES gain early inflight in asymptomatic subjects. A significant difference in VOR-S was found between SMS susceptible and non-susceptible subjects. There is no evidence that any changes in VOR characteristics contributed to SMS

    Saccadic eye movement during spaceflight

    Get PDF
    Saccadic eye movements were studied in six subjects during two Space Shuttle missions. Reaction time, peak velocity and accuracy of horizontal, visually-guided saccades were examined preflight, inflight and postflight. Conventional electro-oculography was used to record eye position, with the subjects responding to pseudo-randomly illuminated targets at 0 deg and + or - 10 deg and 20 deg visual angles. In all subjects, preflight measurements were within normal limits. Reaction time was significantly increased inflight, while peak velocity was significantly decreased. A tendency toward a greater proportion of hypometric saccades inflight was also noted. Possible explanations for these changes and possible correlations with space motion sickness are discussed
    corecore