561 research outputs found

    Molecular Imaging of Invasive Pulmonary Aspergillosis using ImmunoPET/MRI: The Future Looks Bright

    Get PDF
    This is the final version of the article. Available from Frontiers Media via the DOI in this record.Invasive pulmonary aspergillosis (IPA) is a life-threatening lung disease of immuno-compromised humans caused by the ubiquitous environmental mould Aspergillus. Biomarker tests for the disease lack sensitivity and specificity, and culture of the fungus from invasive lung biopsy is slow, insensitive, and undesirable in critically ill patients. A Computed Tomogram (CT) of the chest offers a simple non-intrusive diagnostic procedure for rapid decision-making, and so is used in many haematology units to drive antifungal treatment. However, radiological indicators that raise the suspicion of IPA are either transient signs in the early stages of the disease, or are not specific for Aspergillus infection, with other angio-invasive moulds or bacterial pathogens producing comparable radiological manifestations in a chest CT. Improvements to the specificity of radiographic imaging of IPA have been attempted by coupling CT and Positron Emission Tomography (PET) with [18F]FDG, a marker of metabolic activity well-suited to cancer imaging, but with limited use in invasive fungal disease diagnostics due to its inability to differentiate between infectious etiologies, cancer, and inflammation. Bioluminescence imaging using single genetically modified strains of Aspergillus fumigatus has enabled in vivo monitoring of IPA in animal models of disease. For in vivo detection of Aspergillus lung infections in humans, radiolabelled Aspergillus-specific monoclonal antibodies, and iron siderophores, hold enormous potential for clinical diagnosis. This review examines the different experimental technologies used to image IPA, and recent advances in state-of-the-art molecular imaging of IPA using antibody-guided Positron Emission Tomography/Magnetic Resonance Imaging (immunoPET/MRI).This work was supported by the European Union Seventh Framework Program FP7/2007-2013 under grant 602820

    Differentiation of the emerging human pathogens Trichosporon asahii and Trichosporon asteroides from other pathogenic yeasts and moulds by using species-specific monoclonal antibodies

    Get PDF
    This is the final version of the article. Available from the publisher via the DOI in this record.The fungal genus Trichosporon contains emerging opportunistic pathogens of humans, and is the third most commonly isolated non-candidal yeast from humans. Trichosporon asahii and T. asteroides are the most important species causing disseminated disease in immunocompromised patients, while inhalation of T. asahii spores is the most important cause of summer-type hypersensitivity pneumonitis in healthy individuals. Trichosporonosis is misdiagnosed as candidiasis or cryptococcosis due to a lack of awareness and the ambiguity of diagnostic tests for these pathogens. In this study, hybridoma technology was used to produce two murine monoclonal antibodies (MAbs), CA7 and TH1, for detection and differentiation of Trichosporon from other human pathogenic yeasts and moulds. The MAbs react with extracellular antigens from T. asahii and T. asteroides, but do not recognise other related Trichosporon spp., or unrelated pathogenic yeasts and moulds including Candida, Cryptococcus, Aspergillus, Fusarium, and Scedosporium spp., or the etiologic agents of mucormycosis. Immunofluorescence and Western blotting studies show that MAb CA7, an immunoglobulin G1 (IgG1), binds to a major 60 kDa glycoprotein antigen produced on the surface of hyphae, while TH1, an immunoglobulin M (IgM), binds to an antigen produced on the surface of conidia. The MAbs were used in combination with a standard mycological growth medium (Sabouraud Dextrose Agar) to develop an enzyme-linked immunosorbent assay (ELISA) for differentiation of T. asahii from Candida albicans and Cryptococcus neoformans in single and mixed species cultures. The MAbs represent a major advance in the identification of T. asahii and T. asteroides using standard mycological identification methods

    Detection of human pathogenic Fusarium species in hospital and communal sink biofilms by using a highly specific monoclonal antibody

    Get PDF
    This is the author accepted manuscript. The final version is available from Wiley via the DOI in this record.The fungus Fusarium is well known as a plant pathogen, but has recently emerged as an opportunistic pathogen of humans. Habitats providing direct human exposure to infectious propagules are largely unknown, but there is growing evidence that plumbing systems are sources of human pathogenic strains in the Fusarium solani species complex (FSSC) and Fusarium oxysporum species complex (FOSC), the most common groups infecting humans. Here, we use a newly developed Fusarium-specific monoclonal antibody (mAb ED7) to track FSSC and FOSC strains in sink drain biofilms by detecting its target antigen, an extracellular 200kDa carbohydrate, in saline swabs. The antigen was detectable in 52% of swab samples collected from sinks across a University campus and a tertiary care hospital. The mAb was 100% accurate in detecting FSSC, FOSC and F. dimerum species complex (FDSC) strains that were present, as mixed fungal communities, in 83% of sink drain biofilms. Specificity of the ELISA was confirmed by sequencing of the internally transcribed spacer 1 (ITS1)-5.8S-ITS2 rRNA-encoding regions of culturable yeasts and molds that were recovered using mycological culture, while translation elongation factor (TEF)-1α analysis of Fusarium isolates included FSSC 1-a, FOSC 33 and FDSC ET-gr, the most common clinical pathotypes in each group

    Detection of the ‘Big Five’ mold killers of humans: Aspergillus, Fusarium, Lomentospora, Scedosporium and Mucormycetes

    Get PDF
    This is the author accepted manuscript. The final version is available from Elsevier via the DOI in this recordFungi are an important but frequently overlooked cause of morbidity and mortality in humans. Life-threatening fungal infections mainly occur in immunocompromised patients, and are typically caused by environmental opportunists that take advantage of a weakened immune system. The filamentous fungus Aspergillus fumigatus is the most important and well-documented mould pathogen of humans, causing a number of complex respiratory diseases, including invasive pulmonary aspergillosis, an often fatal disease in patients with acute leukemia or in immunosuppressed bone marrow or solid organ transplant recipients. However, non-Aspergillus moulds are increasingly reported as agents of disseminated diseases, with Fusarium, Scedosporium, Lomentospora and mucormycete species now firmly established as pathogens of immunosuppressed and immunocompetent individuals. Despite well-documented risk factors for invasive fungal diseases, and increased awareness of the risk factors for life-threatening infections, the number of deaths attributable to moulds is likely to be severely underestimated driven, to a large extent, by the lack of readily accessible, cheap, and accurate tests that allow detection and differentiation of infecting species. Early diagnosis is critical to patient survival but, unlike Aspergillus diseases, where a number of CE-marked or FDA-approved biomarker tests are now available for clinical diagnosis, similar tests for fusariosis, scedosporiosis and mucormycosis remain experimental, with detection reliant on insensitive and slow culture of pathogens from invasive bronchoalveolar lavage fluid, tissue biopsy, or from blood. This review examines the ecology, epidemiology, and contemporary methods of detection of these mould pathogens, and the obstacles to diagnostic test development and translation of novel biomarkers to the clinical setting.Innovate U

    Detection of the sour-rot pathogen Geotrichum candidum in tomato fruit and juice by using a highly specific monoclonal antibody-based ELISA

    Get PDF
    Copyright © 2010 Elsevier. NOTICE: this is the author’s version of a work that was accepted for publication in International Journal of Food Microbiology. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in International Journal of Food Microbiology, 2010, Vol. 143, Issue 3, pp. 166 – 172 DOI: 10.1016/j.ijfoodmicro.2010.08.012Geotrichum candidum is a common soil-borne fungus that causes sour-rot of tomatoes, citrus fruits and vegetables, and is a major contaminant on tomato processing equipment. The aim of this work was to produce a monoclonal antibody and diagnostic assay for its detection in tomato fruit and juice. Using hybridoma technology, a cell line (FE10) was generated that produced a monoclonal antibody belonging to the immunoglobulin class M (IgM) that was specific to G. candidum and the closely related teleomorphic species Galactomyces geotrichum and anamorphic species Geotrichum europaeum and Geotrichum pseudocandidum in the G. geotrichum/G. candidum complex. The MAb did not cross-react with a wide range of unrelated fungi, including some likely to be encountered during crop production and processing. The MAb binds to an immunodominant high molecular mass (> 200 kDa) extracellular polysaccharide antigen that is present on the surface of arthroconidia and hyphae of G. candidum. The MAb was used in a highly specific enzyme-linked immunosorbent assay (ELISA) to accurately detect the fungus in infected tomato fruit and juice. Specificity of the ELISA was confirmed by sequencing of the internally transcribed spacer (ITS) 1-5.8S-ITS2 rRNA-encoding regions of fungi isolated from naturally-infected tomatoes

    Owner perceptions of their cat's quality of life when treated with a modified University of Wisconsin-Madison protocol for lymphoma

    Get PDF
    The objectives of this study were to assess owner perceptions of their cat’s quality of life during treatment for lymphoma with a doxorubicin-containing multi-agent chemotherapy protocol, whether various health-related parameters correlated with quality of life scores, and to assess owner satisfaction with the protocol

    A Lateral-Flow Device for the Rapid Detection of Scedosporium Species

    Get PDF
    This is the final version. Available on open access from MDPI via the DOI in this recordData Availability Statement: The data presented in this study are available on request from the corresponding author but are not publicly available due to commercial confidentialities. Monoclonal antibody HG12 and the LFD are available through ISCA Diagnostics Ltd.Scedosporium species are human pathogenic fungi, responsible for chronic, localised, and life-threatening disseminated infections in both immunocompetent and immunocompromised individuals. Diagnosis of Scedosporium infections currently relies on non-specific CT, lengthy and insensitive culture from invasive biopsy, and time-consuming histopathology of tissue samples. At present, there are no rapid antigen tests that detect Scedosporium-specific biomarkers. Here we report the development of a rapid (30 min) and sensitive (pmol/L sensitivity) lateral-flow device (LFD) test, incorporating a Scedosporium-specific IgG1 monoclonal antibody (mAb), HG12, which binds to extracellular polysaccharide (EPS) antigens of between ~15 kDa and 250 kDa secreted during hyphal growth of the pathogens. The test is compatible with human serum, and allows the detection of the Scedosporium species most frequently reported as agents of human disease (Scedosporium apiospermum, Scedosporium aurantiacum, and Scedosporium boydii), with limits of detection (LOD) of the EPS biomarkers in human serum of ~0.81 ng/mL (S. apiospermum), ~0.94 ng/mL (S. aurantiacum), and ~1.95 ng/mL (S. boydii). The Scedosporium-specific LFD (ScedLFD) test therefore provides a potential novel opportunity for the detection of infections caused by different Scedosporium species.ISCA Diagnostics Ltd

    Continuing Shifts in Epidemiology and Antifungal Susceptibility Highlight the Need for Improved Disease Management of Invasive Candidiasis

    Get PDF
    This is the final version. Available on open access from MDPI via the DOI in this recordInvasive candidiasis (IC) is a systemic life-threatening infection of immunocompromised humans, but remains a relatively neglected disease among public health authorities. Ongoing assessments of disease epidemiology are needed to identify and map trends of importance that may necessitate improvements in disease management and patient care. Well established incidence increases, largely due to expanding populations of patients with predisposing risk factors, has led to increased clinical use and pressures on antifungal drugs. This has been exacerbated by a lack of fast, accurate diagnostics that have led treatment guidelines to often recommend preventative strategies in the absence of proven infection, resulting in unnecessary antifungal use in many instances. The consequences of this are multifactorial but a contribution to emerging drug resistance is of primary concern, with high levels of antifungal use heavily implicated in global shifts to more resistant Candida strains. Preserving and expanding the utility and number of antifungals should therefore be of the highest priority. This may be achievable through the development and use of biomarker tests, bringing about a new era in improved antifungal stewardship, as well as novel antifungals that offer favourable profiles by targeting Candida pathogenesis mechanisms over cell viability

    NADPH oxidases regulate septin-mediated cytoskeletal remodeling during plant infection by the rice blast fungus

    Get PDF
    notes: PMCID: PMC3581893types: Journal Article; Research Support, Non-U.S. Gov'tThe rice blast fungus Magnaporthe oryzae infects plants with a specialized cell called an appressorium, which uses turgor to drive a rigid penetration peg through the rice leaf cuticle. Here, we show that NADPH oxidases (Nox) are necessary for septin-mediated reorientation of the F-actin cytoskeleton to facilitate cuticle rupture and plant cell invasion. We report that the Nox2-NoxR complex spatially organizes a heteroligomeric septin ring at the appressorium pore, required for assembly of a toroidal F-actin network at the point of penetration peg emergence. Maintenance of the cortical F-actin network during plant infection independently requires Nox1, a second NADPH oxidase, which is necessary for penetration hypha elongation. Organization of F-actin in appressoria is disrupted by application of antioxidants, whereas latrunculin-mediated depolymerization of appressorial F-actin is competitively inhibited by reactive oxygen species, providing evidence that regulated synthesis of reactive oxygen species by fungal NADPH oxidases directly controls septin and F-actin dynamics.Biotechnology and Biological Sciences Research Council (BBSRC)National Natural Science Foundation of ChinaHalpin ScholarshipEuropean Research Council Advanced Investigator Awar

    Identifying risk factors for exposure to culturable allergenic moulds in energy efficient homes by using highly specific monoclonal antibodies.

    Get PDF
    PublishedThis is the author accepted manuscript. The final version is available from Elsevier via the DOI in this record.The aim of this study was to determine the accuracy of monoclonal antibodies (mAbs) in identifying culturable allergenic fungi present in visible mould growth in energy efficient homes, and to identify risk factors for exposure to these known allergenic fungi. Swabs were taken from fungal contaminated surfaces and culturable yeasts and moulds isolated by using mycological culture. Soluble antigens from cultures were tested by ELISA using mAbs specific to the culturable allergenic fungi Aspergillus and Penicillium spp., Ulocladium, Alternaria, and Epicoccum spp., Cladosporium spp., Fusarium spp., and Trichoderma spp. Diagnostic accuracies of the ELISA tests were determined by sequencing of the internally transcribed spacer 1 (ITS1)-5.8S-ITS2-encoding regions of recovered fungi following ELISA. There was 100% concordance between the two methods, with ELISAs providing genus-level identity and ITS sequencing providing species-level identities (210 out of 210 tested). Species of Aspergillus/Penicillium, Cladosporium, Ulocladium/Alternaria/Epicoccum, Fusarium and Trichoderma were detected in 82% of the samples. The presence of condensation was associated with an increased risk of surfaces being contaminated by Aspergillus/Penicillium spp. and Cladosporium spp., whereas moisture within the building fabric (water ingress/rising damp) was only associated with increased risk of Aspergillus/Penicillium spp. Property type and energy efficiency levels were found to moderate the risk of indoor surfaces becoming contaminated with Aspergillus/Penicillium and Cladosporium which in turn was modified by the presence of condensation, water ingress and rising damp, consistent with previous literature.Richard Sharpe's PhD scholarship was funded by the European Social Fund Convergence Program for Cornwall and the Isles of Scilly, and was undertaken in collaboration with Coastline Housing. The European Centre for Environment and Human Health (part of the University of Exeter Medical School) is part financed by the European Regional Development Fund Program 2007–2013 and European Social Fund Convergence Program for Cornwall and the Isles of Scill
    • …
    corecore