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Invasive pulmonary aspergillosis (IPA) is a life-threatening lung disease of immuno-
compromised humans caused by the ubiquitous environmental mold Aspergillus.
Biomarker tests for the disease lack sensitivity and specificity, and culture of the fungus
from invasive lung biopsy is slow, insensitive, and undesirable in critically ill patients.
A computed tomogram (CT) of the chest offers a simple non-intrusive diagnostic
procedure for rapid decision making, and so is used in many hematology units to
drive antifungal treatment. However, radiological indicators that raise the suspicion of
IPA are either transient signs in the early stages of the disease or not specific for
Aspergillus infection, with other angio-invasive molds or bacterial pathogens producing
comparable radiological manifestations in a chest CT. Improvements to the specificity of
radiographic imaging of IPA have been attempted by coupling CT and positron emission
tomography (PET) with [18F]fluorodeoxyglucose ([18F]FDG), a marker of metabolic
activity well suited to cancer imaging, but with limited use in invasive fungal disease
diagnostics due to its inability to differentiate between infectious etiologies, cancer,
and inflammation. Bioluminescence imaging using single genetically modified strains of
Aspergillus fumigatus has enabled in vivo monitoring of IPA in animal models of disease.
For in vivo detection of Aspergillus lung infections in humans, radiolabeled Aspergillus-
specific monoclonal antibodies, and iron siderophores, hold enormous potential for
clinical diagnosis. This review examines the different experimental technologies used
to image IPA, and recent advances in state-of-the-art molecular imaging of IPA using
antibody-guided PET/magnetic resonance imaging (immunoPET/MRI).

Keywords: monoclonal antibody (mAb), invasive pulmonary aspergillosis, positron emission tomography,
magnetic resonance imaging, immunoPET-MRI

INTRODUCTION

Invasive pulmonary aspergillosis is a frequently fatal lung disease of immuno-compromised
individuals caused by inhalation of spores of the air-borne fungus Aspergillus. While a number
of species of Aspergillus can cause IPA, the principal agent of the disease is Aspergillus fumigatus,
responsible for >80% of recorded cases. As an opportunistic pathogen, it causes more than 200,000

Abbreviations: CT, computed tomography; IFD, invasive fungal disease; IPA, invasive pulmonary aspergillosis; MRI,
magnetic resonance imaging, PET, positron emission tomography.
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life-threatening infections in humans every year, mainly in
high-risk patient groups such as those with hematological
malignancies, and in hematopoietic stem cell (HSC) and
solid organ transplant recipients, with mortality rates of
between 30 and 90% (Segal, 2009). The disease is typically
seen during periods of prolonged neutropenia, but non-
neutropenic patients with underlying lung diseases such
as steroid-treated chronic obstructive pulmonary disease
(COPD), asthma, lung cancer, or autoimmune diseases with
pulmonary involvement can develop IPA (Prattes et al., 2014).
Furthermore, other Aspergillus lung diseases such as chronic
pulmonary aspergillosis (CPA) and allergic bronchopulmonary
aspergillosis (ABPA) are thought to affect >5 million people
globally each year (Brown et al., 2012). Taken together,
Aspergillus diseases represent a significant burden to human
health, contributing to patient morbidities and prolonging
hospitalization. Much of this burden is caused by the lack
of diagnostic tests with sufficient accuracy to allow early
identification and timely intervention with effective antifungal
drugs.

Early detection of IPA and treatment with mold-active drugs
is vital for patient survival. However, clinical symptoms of
the disease (fevers and chills, hemoptysis, shortness of breath,
chest pains, and headaches) are not specific for Aspergillus
infections. The gold standard test for IPA is culture of Aspergillus
from a sterile biopsy, but this is limited by poor sensitivity,
lengthy turnaround time, and requires invasive recovery
of lung tissue. Assays that detect circulating biomarkers of
infection such as the Platelia galactomannan enzyme-linked
immunosorbent assay (ELISA) and “pan-fungal” β-D-glucan
tests lack either sensitivity or specificity (Prattes et al., 2014).
The Aspergillus lateral-flow assay (LFA; Thornton, 2008) will
be available commercially as a CE-marked in vitro device
(IVD) for IPA diagnosis in March 2018. When used with
BAL samples, it has the ability to be used as a point-of-
care test, and so has the potential to improve the speed and
accuracy of disease detection (Hoenigl et al., 2017). Despite
this, the current inadequacies of IPA diagnostics have led
to the empiric or “fever-driven” use of antifungals. This
contributes to the erroneous treatment of already sick patients
with costly and noxious drugs and promotes the emergence
in Aspergillus of resistance to mold-active triazoles and to
breakthrough infections. Empiric antifungal treatments also
impact the sensitivities of fungal culture and biomarker-
assisted tests, which are needed for diagnosis, for establishing
drug sensitivities, and for monitoring responsiveness to
treatments.

Diagnostic-driven approaches to antifungal treatment have
been shown to be more effective than empiric treatment with
respect to both cost and patient outcome (Barnes, 2013).
Diagnostic-driven approaches to IPA treatment habitually rely
on radiographic imaging, coupled with frequent testing for
fungal biomarkers. Radiographic imaging is an attractive means
of detecting Aspergillus lung infections in vivo because it is
a non-invasive procedure, but basic radiographic findings in
IPA are largely non-specific (Panse et al., 2016). A computed
tomogram (CT) of the chest provides a quick non-intrusive

clue for rapid decision making (Prasad et al., 2016), with the
earliest sign suggestive of the disease being a nodule. The “halo
sign,” a transient CT finding, is also suggestive of probable
disease, and initiation of antifungal treatment in patients with
this indicator at baseline has been associated with improved
patient outcomes for early stages compared to later stages of
disease (Greene, 2005; Greene et al., 2007). However, other mold
pathogens such as mucormycetes species, and angio-invasive
bacterial pathogens such as Pseudomonas aeruginosa, can give
similar appearances (Segal, 2009; Stanzani et al., 2015). The “halo
sign” therefore provides only limited accuracy for the diagnosis
of IPA.

Over recent years, alternative techniques for non-invasive
imaging of IPA have been developed and tested in pre-
clinical animal models of disease (Velde and Wiehr, 2017).
One such method is bioluminescence, that has been used to
track Candida albicans and A. fumigatus infections and to
monitor their responsiveness to antifungal treatments (Doyle
et al., 2006; d’Enfert et al., 2010; Brock, 2012; Jacobsen
et al., 2014). Bioluminescent strains of A. fumigatus have
been generated through constitutive expression of the firefly
luciferase gene under the fungal promoter gpdA (Brock et al.,
2008). Transformed strains of the pathogen have been used to
monitor antifungal drug efficacies in vitro and in vivo (Brock
et al., 2008; Galiger et al., 2013) and to investigate the roles
of resident and recruited immune effector cells in defense
against invasive A. fumigatus infections (Ibrahim-Granet et al.,
2010). The limitation of this technique is the requirement
for genetically modified strains, which restricts studies to
single mutants of the pathogen expressing luciferase. Different
approaches for imaging IPA have therefore been explored using,
for example, small molecules such as peptides (Yang et al., 2009),
and the antifungal drug fluconazole coupled to 18F or 99mTc
(Lupetti et al., 2002), for scintigraphic imaging of infections.
For instance, using a 111In-labeled peptide c(CGGRLGPFC)-
NH2 selected from a bacteriophage phage library, γ-imaging
is able to delineate experimental IPA in mice (Yang et al.,
2009). However, because the peptide corresponds to extracellular
matrix proteins of the lung parenchyma, it is probable that
the peptide binds to other fungi that are able to interact
with extracellular matrix components of the lungs. Further
specificity tests would therefore need to be conducted in vivo
to determine the spectrum of IFDs detectable with this probe.
While 99mTc-fluconazole proved to be superior to 18F-fluconazole
for imaging of C. albicans infections in mice, it was found to be
unsuitable for imaging of A. fumigatus infections (Lupetti et al.,
2002).

The limitations of bioluminescence and small molecule
imaging have led to efforts to improve the specificity of
radiographic imaging of IPA by combining well-established
hospital imaging technologies [high-resolution computed
tomography (HRCT), MRI, and PET] with specific markers
of infection. The aim of this mini-review is to examine recent
advances in molecular imaging of IPA using radiolabeled
Aspergillus-specific monoclonal antibodies (mAbs), and iron
siderophores, and their potential for translation to the clinical
setting.
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ASPERGILLOSIS IMAGING WITH
COMPUTED TOMOGRAPHY AND
MAGNETIC RESONANCE IMAGING

According to current EORTC/MSG guidelines (De Pauw et al.,
2008), a CT examination of the chest that reveals “dense, well-
delineated, nodular infiltrates in the lung with or without ground
glass attenuation (‘halo sign’) in a patient with an ongoing or
recent history of prolonged neutropenia, or hematopoietic stem
cell transplant (HSCT),” is defined as having a “possible” mold
infection. Importantly, while 88–96% of neutropenic patients
exhibit this sign in the first day of IPA, it disappears in one-
third of patients within 72 h and in the remaining two-thirds
of patients within 2 weeks (Caillot et al., 1997; Brodoefel et al.,
2006). Furthermore, this diagnosis is not specific for IPA, as
other infections, and neoplastic and inflammatory processes,
can produce similar opacities with ground glass attenuation
(Georgiadou et al., 2011), and the disease can also manifest as
atypical presentations in liver transplant patients (Mucha et al.,
2013) and during invasive bronchial-pulmonary aspergillosis in
critically ill patients with COPD (Huang et al., 2016). Radiological
indications are rare in the initial stages of IPA in non-neutropenic
patients (Prattes et al., 2014), and differ between children and
adults with IFDs (Ankrah et al., 2016).

Notwithstanding these limitations, CT acts as a prompt for
instigating antifungal treatment in numerous hematology units,
with HRCT providing opportunities for improved antifungal
stewardship (Stanzani et al., 2016). Reductions in the unnecessary
use of antifungal drugs have been reported in centers using HRCT
to drive treatment strategies in allogeneic transplant patients
who have persistent febrile antibiotic-resistant neutropenia
(Dignan et al., 2009). Therefore, in certain settings, refractory
fever/HRCT-based approaches to diagnosis may result in
significant reductions in parenteral antifungal drug usage in
patients who would otherwise have received empirical treatment.
However, due to the limited specificity of HRCT, such an
approach cannot be used for IPA specifically, but rather IFDs as
a whole (Dignan et al., 2009). Improvements to the specificity
of HRCT for the detection of fungal lung infections have been
attempted by combining it with pulmonary angiography (CTPA),
but the performance of CTPA relative to other signs (halo sign,
hypo-dense sign, pleural effusion, and reversed halo sign) is not
known. Nevertheless, vessel occlusion detected by CTPA may be
a more sensitive and possibly more specific radiographic sign in
patients with hematological malignancies (Stanzani et al., 2015).

Pre-clinical studies using MORF oligomers that target
fungal ribosomal RNA have shown that CT specificity can be
dramatically improved when 99mTc-labeled Aspergillus-specific
probes are combined with SPECT (Wang et al., 2013). Two
probes, AGEN and AFUM, have been investigated that are
genus-specific and A. fumigatus-specific, respectively. Single
photon emission tomography (SPECT)/CT imaging of mice with
experimental IPA showed a twofold increased accumulation
of both 99mTc-labeled probes in A. fumigatus infected lungs
compared to uninfected controls. While the AGEN oligomer was
found to cross-react with C. albicans, and the AFUM oligomer
would preclude detection of infectious Aspergillus species other

than A. fumigatus, the work nevertheless elegantly demonstrates
that CT imaging can be rendered disease-specific by using
pathogen-specific probes.

Magnetic resonance imaging is now the non-invasive imaging
tool of choice, with high spatial resolution and the highest soft
tissue contrast. However, unlike HRCT, MRI has received far
less attention as a diagnostic imaging modality for Aspergillus
lung infections, but has been studied extensively as a detection
aid for Aspergillus cerebral and central nervous system infections
(Starkey et al., 2014; Marzolf et al., 2016). While CT is highly
suitable for lung applications because it produces high-resolution
3D images with an excellent air–tissue contrast, MRI of the lung
is challenging owing to the lack of detectable protons in air-
filled spaces and potential artifacts between air–tissue interfaces.
Despite these shortcomings, a longitudinal in vivo study in
mice showed that A. fumigatus lung lesions could be visualized
and quantified using MRI (Poelmans et al., 2016). By using
an advanced MR pulse sequence with ultra-short echo times,
pathological changes within the infected lung were visually and
quantitatively detectable and with a high degree of sensitivity.
In humans, dynamic contrast-enhanced MRI (DCE-MRI) might
also be useful for imaging IPA in immunosuppressed acute
myeloid leukemia patients (Araz et al., 2014).

ASPERGILLOSIS IMAGING WITH
[18F]FDG POSITRON EMISSION
TOMOGRAPHY

In contrast to HRCT and MRI, PET can give information about
the physiological status of the particular target organ. It has
emerged as an immensely powerful imaging technique in the
field of oncology, but its use in infectious disease imaging is
very much in its infancy (Glaudemans et al., 2012, 2015; Signore
et al., 2015). Compared to SPECT of IPA using 67Ga scintigraphy
(Tzen et al., 1999; Goméz et al., 2000), PET provides increased
sensitivity and resolution through coincidence detection of
photons emitted from radionuclei resulting from positron
annihilation, with its success in oncology resulting from the
use of [18F]fluorodeoxyglucose ([18F]FDG), a diagnostic tracer
that specifically accumulates in metabolically active inflammatory
cells (neutrophils, macrophages, and lymphocytes), cancer cells,
and during infectious processes (Imperiale et al., 2010; Bassetti
et al., 2017).

Several studies have indicated that [18F]FDG might be
useful for imaging fungal infections (Sharma et al., 2014), for
differentiating between non-invasive and invasive aspergillosis
(Kim et al., 2013), for identification of extra-pulmonary sites of
infection (Chamilos et al., 2008), and for therapy monitoring (Ho
et al., 1998; Ozsahin et al., 1998; Franzius et al., 2001; Stanzani
et al., 2016). However, a recent study by Rolle et al. (2016), which
employed PET and MRI (PET/MRI) to detect lung infections by
A. fumigatus in vivo, showed that the increase in [18F]FDG uptake
during Aspergillus lung infection could not be distinguished
from that seen during sterile inflammation or during bacterial
lung infections caused by Streptococcus pneumonia or Yersinia
enterocolitica, further demonstrating the lack of specificity of this
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tracer which has been reported elsewhere (Petrik et al., 2014).
While these studies are pre-clinical investigations using mouse
models of IPA, numerous clinical studies have also reported the
lack of specificity of FDG-PET for diagnosing the disease in
humans, with Aspergillus lung diseases mimicking lung cancer
(Wilkinson et al., 2003; Baxter et al., 2011; Garcia-Olivé et al.,
2011), metastatic thyroid cancer (Ahn et al., 2011), lymphoma
(Sonet et al., 2007), and tuberculoma (Nishikawa et al., 2011).
Pulmonary IFIs caused by fungi other than Aspergillus (e.g.,
Candida, Blastomyces, Cryptococcus, Coccidioides, Histoplasma,
mucormycetes, and Pneumocystis) are also detected by FDG-PET
in humans (Ankrah et al., 2016). Consequently, while FDG-
PET may confirm IPA lesions observed using HRCT and other
imaging modalities (Chamilos et al., 2008; Hot et al., 2011), and to
guide needle aspirations of lung tissues for fungal culture (Casal
et al., 2009), it cannot be used for definitive in vivo diagnosis of
IPA, or for its differentiation from ABPA (Nakajima et al., 2009)
or aspergillomas (Franzius et al., 2001; Ahn et al., 2011).

ASPERGILLOSIS IMAGING WITH
68Ga-SIDEROPHORES

Other than the Aspergillus-reactive 99mTc-labeled MORF probes
(Wang et al., 2013), few imaging tracers have been developed
that specifically target Aspergillus infections, but substantial
success has been achieved by combining microPET/CT with
iron-scavenging siderophores labeled with 68Ga or 89Zr. Iron
is essential for fungal growth and, in iron-poor environments
such as serum, bacteria and fungi produce low molecular weight
ferric iron-specific chelators to scavenge iron from the host
(Haas, 2003). A. fumigatus lacks specific uptake systems for host
iron sequestered in heme, ferritin or transferrin, and instead
uses two high-affinity iron uptake mechanisms, reductive iron
assimilation and siderophore-assisted iron mobilization, both
of which are induced under conditions of iron starvation.
The pathogen produces three hydroxamate-type siderophores,
extracellular fusarinine C (FSC) and triacetylfusarinine C
(TAFC), and intracellular ferricrocin (FC; Schrettl et al., 2004;
Haas et al., 2015). TAFC is secreted soon after spore germination
in iron-limited media (Hissen et al., 2004), and is detectable
in serum from patients with proven/probable IPA (Carroll
et al., 2016). Its biosynthesis is an essential requirement for
spore germination, and for virulence in a mouse model of
disease (Schrettl et al., 2004; Hissen et al., 2005). Using
68Ga, a positron emitter with complexing properties similar
to those of Fe(III), Petrik et al. (2010) evaluated the potential
of [68Ga]TAFC and [68Ga]FC as radiopharmaceuticals for
imaging of IPA. They showed that uptake by A. fumigatus was
highly dependent on iron load, but that [68Ga]TAFC displayed
excellent in vitro stability, and highly selective accumulation
in iron-starved cells. Uptake of [68Ga]TAFC in the lungs of
immunosuppressed rats correlated with severity of Aspergillus
infection, while the bio-distribution of [68Ga]FC was inferior
to [68Ga]TAFC, and showed poor stability both in vitro and
in vivo. [68Ga]TAFC was again shown in a subsequent pre-
clinical study to selectively accumulate in infected lung tissues in

a rat infection model, and that another siderophore ferrioxamine
(FOXE), when coupled to 68Ga ([68Ga]FOXE), also displayed
excellent pharmacokinetics, highly selective accumulation in
Aspergillus infected lung tissues, and similarly good correlation
with disease severity (Petrik et al., 2012a,b). A downside of
using the radionuclide 68Ga in PET imaging, compared to
longer-lived positron emitters such as 64Cu (t1/2 = 12.7 h),
124I, 86Y, 90Nb, or 89Zr (t1/2 = 78.41 h), is its relatively short
half-life (t1/2 = 67.7 min), which limits its use in longitudinal
studies. For this reason, alternative siderophores have been
investigated for radiolabeling with 89Zr and for use as imaging
agent for Aspergillus infections (Petrik et al., 2016). Small animal
imaging studies of all 68Ga- and 89Zr-labeled siderophores
injected in mice displayed similar pharmacokinetics and minimal
accumulation of radioactivity in blood and other organs
and tissues, with the exception of [89Zr]FOXE which caused
significant retention in the gastrointestinal tract. [89Zr]TAFC
showed favorable properties for potential longitudinal Aspergillus
infection imaging.

Using the radiolabeled siderophores as diagnostic tracers
should allow for highly specific detection of IPA since TAFC
and FC have no function in human physiology and uptake is
not detectable in human lung cancer cells (Petrik et al., 2014).
However, while the energy-dependent siderophore transporter
system might appear advantageous compared to cell wall-labeling
approaches using, for example, Aspergillus-specific mAbs, the
use of radiolabeled siderophores does have its limitations.
The first is specificity. While pathogenic bacteria have been
shown not to use TAFC- or FOXE-mediated uptake of iron
(Petrik et al., 2014), Fe-TAFC uptake under iron depletion has
been demonstrated in the human pathogenic fungi C. albicans
(Lesuisse et al., 2002) and Fusarium oxysporum (Leal et al.,
2013), and [68Ga]TAFC and [68Ga]FOXE uptake under iron
deficiency has been shown in the human pathogens Fusarium
solani and Rhizopus oryzae (Petrik et al., 2014). Consequently,
further work is needed to determine whether [68Ga]TAFC (or
[68Ga]FOXE) uptake is able to discriminate between Aspergillus
infections in vivo and commensal C. albicans colonization of
the gastrointestinal tract, invasive candidiasis, mucormycosis,
and disseminated Fusarium infections (fusariosis). Furthermore,
while A. fumigatus is the principal agent of IPA, other Aspergillus
species such as Aspergillus flavus, Aspergillus nidulans, Aspergillus
niger, and Aspergillus terreus are able to cause the disease
(Willinger et al., 2014). While uptake of Fe-TAFC has been
shown in A. nidulans (Oberegger et al., 2001) and [68Ga]TAFC
uptake has been shown in A. flavus and A. terreus (albeit
at significantly lower levels than A. fumigatus), it is unclear
whether all infectious Aspergillus species are detectable in vivo
using this system. The second consideration is the important
role of iron overload in the development of invasive fungal
diseases. Many patients at high risk for developing IPA
(heavily transfused AML patients, neutropenic patients, liver and
allogeneic HSCT recipients, and those receiving chemotherapy)
frequently have iron overload, which has been shown to
contribute to the increased susceptibility of these groups to
invasive fungal infections (Alexander et al., 2006; Bullen et al.,
2006; Pagano et al., 2011). In these patients, freely available

Frontiers in Microbiology | www.frontiersin.org 4 April 2018 | Volume 9 | Article 691

https://www.frontiersin.org/journals/microbiology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-09-00691 April 5, 2018 Time: 17:13 # 5

Thornton Antibody-Guided Imaging of Invasive Pulmonary Aspergillosis

iron could arguably lead to decreased imaging sensitivity using
[68Ga]TAFC (or [68Ga]FOXE), given the strong correlation
between iron availability and uptake of radiolabeled siderophores
by A. fumigatus. Despite these potential drawbacks, the possibility
of accurately diagnosing IPA in humans using [68Ga]TAFC or
[68Ga]FOXE imaging merits clinical evaluation.

ASPERGILLOSIS IMAGING WITH
MONOCLONAL ANTIBODY JF5

Despite the abilities of mAbs to differentiate different genera
and species of human pathogenic fungi, and their capacity
to discriminate between inactive spores and invasive hyphae
(Thornton and Wills, 2015), their use in molecular imaging
of IFDs has yet to be fully realized. Imaging with antibodies
has, until very recently, been the domain of cancer detection
(Mestel, 2017), with limited application in infectious disease
diagnostics (Rolle and Wiehr, 2017). However, recent studies
have demonstrated the enormous potential of antibody-guided
PET/MRI (immunoPET/MRI) technologies to dramatically
improve the molecular imaging of viral (Santangelo et al.,
2014), bacterial (Wiehr et al., 2016), and fungal (Rolle et al.,
2016; Davies et al., 2017) infections in vivo, with the real
possibility of precision medicine for infectious diseases in the
near future (Jain, 2017). ImmunoPET/MRI marries functionality
of PET with the specificity of mAbs and anatomical depiction
of MRI. Any infectious disease can potentially be detected
with this technology provided that high-integrity antibodies are
available that have sufficient specificity for the target organism
and which detect signature molecules of active infection. In
the case of IPA, these diagnostic requirements have been met
through the Aspergillus-specific mouse mAb mJF5 (Thornton,
2008) and its humanized derivative hJF5 (Davies et al., 2017).
mAb mJF5, which forms the basis of the Aspergillus LFA
(Thornton, 2008; Prattes et al., 2014; Hoenigl et al., 2017), binds
to extracellular (galacto)mannoprotein antigens produced by all
clinically relevant Aspergillus species (Thornton, 2014; Davies
et al., 2017), and is able to detect IPA in humans caused by
A. fumigatus, A. flavus, A. nidulans, A. niger, and A. terreus, either
as single or as mixed species infections (Willinger et al., 2014).
Its high-level specificity for Aspergillus species means that it is
able to discriminate between IPA and lungs infections caused by
other mold pathogens including F. solani (Willinger et al., 2014).
Furthermore, the JF5 antigen is produced during active growth
only, which means that it is able to differentiate between inactive
spores present in inhaled air and invasive hyphae that infect or
colonize the lung (Thornton, 2008, 2014).

ASPERGILLOSIS IMAGING WITH
ANTIBODY-GUIDED POSITRON
EMISSION TOMOGRAPHY/MAGNETIC
RESONANCE IMAGING

Novel probes for the non-invasive detection of A. fumigatus
lung infection based on antibody-guided PET/MR imaging

(immunoPET/MRI) have recently been reported (Rolle et al.,
2016; Davies et al., 2017). Administration of [64Cu]DOTA-
labeled mAb mJF5 to neutrophil-depleted A. fumigatus-infected
mice allowed specific localization of lung infections when
combined with PET, while optical imaging with a fluorophore
(DyLight650)-labeled version of the mAb showed co-localization
with invasive hyphae (Rolle et al., 2016). The [64Cu]DOTA-mJF5
tracer distinguished Aspergillus from bacterial lung infections
and, unlike [18F]FDG-PET, differentiated Aspergillus infection
from lung inflammation caused by a sterile inflammatory
stimulus. The long in vivo half-life of [64Cu]DOTA-mJF5 allows
repeat imaging of infections following a single injection of
the radioactive tracer and, because it is hyphal-specific, may
prove useful in monitoring infection in response to antifungal
treatment.

Despite specific uptake of the [64Cu]DOTA-mJF5 tracer
in the lungs of A. fumigatus-infected animals compared to
uninfected controls, high liver uptake of the tracer was also
evident. It was hypothesized that this liver uptake might
be due to hepatic removal of the radiolabeled antibody
circulating in the bloodstream, specific binding to antigen
in liver tissues following shedding of soluble antigen from
hyphae in the lungs, and transchelation of 64Cu to liver
proteins due to insufficiently strong binding to the chelator
DOTA. Transchelation of 64Cu to serum protein was shown
not to occur, although it has been shown elsewhere that
DOTA has a poor in vivo stability, which results in loss of
the radio-metal and its non-specific accumulation in off-target
tissues. In a subsequent study (Davies et al., 2017), the
chelator DOTA was exchanged with the alternative 64Cu
chelators DOTAGA and NODAGA, which have increased in vivo
stability. This decreased the uptake of the radiolabeled immuno-
conjugates in the liver, while preserving specific accumulation
in the A. fumigatus-infected lung. In particular, a NODAGA
conjugated tracer ([64Cu]NODAGA-mJF5) provided the lowest
liver uptake, while enabling the greatest uptake in infected
lungs.

The immunoPET/MR imaging technology based on mAb
mJF5 is fundamentally translatable to human disease detection
since the antibody tracks a biomarker of Aspergillus infection
that has been clinically validated for human IPA diagnosis using
LFA tests of serum and BAL fluids (Thornton, 2008; Held et al.,
2013; White et al., 2013; Prattes et al., 2014; Willinger et al.,
2014; Hoenigl et al., 2017). To allow translation of the antibody
tracer to the clinical setting, a humanized version of the antibody
(hJF5) has been generated by grafting of the mJF5 CDRs into a
human IgG1 framework (Davies et al., 2017). Pre-clinical imaging
with a [64Cu]NODAGA-hJF5 tracer in a neutropenic mouse
model of IPA (Figure 1) has demonstrated improved PET/MR
image resolution of A. fumigatus lung infections compared to its
murine counterpart [64Cu]NODAGA-mJF5 (Davies et al., 2017),
with the lowest liver uptake but highest uptake in infected lungs
(Figure 2).

Using targeted deletion of the gene encoding UDP-
galactopyranose mutase, an enzyme involved in the
production of galactofuranose-containing glyco-conjugates
in Aspergillus species, mAb JF5 has been shown to bind to
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FIGURE 1 | Schematic representation of antibody-guided immunoPET/MR imaging of IPA in a neutropenic mouse model of disease. Twenty-four hours (–1 day) prior
to infection with A. fumigatus, and administration of the PET tracer, neutropenia is induced in mice by the injection of 100 µg of the anti-Ly-6G/anti-Ly6C antibody
RB6-8C5. At time 0, mice are infected by intratracheal injection with an A. fumigatus spore suspension and with simultaneous tail vein injection with a JF5-based
PET tracer. The tracer shown is mAb JF5 conjugated to the positron emitter 64Cu using the chelator NODAGA. Simultaneous PET/MR imaging of animals is then
performed 3, 24, and 48 h after infection/tracer injection. Ex vivo bio-distribution and autoradiography are conducted after the last PET scan at 48 h. Adapted from
Davies et al. (2017).

FIGURE 2 | ImmunoPET/MR imaging of IPA using the humanized Aspergillus-specific tracer [64Cu]NODAGA-hJF5. The images show coronal maximum intensity
projections (MIP), magnetic resonance (MR) imaging, and fused positron emission tomography (PET)/MR images of uninfected mice (PBS control) and mice infected
with A. fumigatus. In order to render animals neutropenic, they received an intraperitoneal injection of the antibody RB6-8C5 and, 24 h later, were injected with the
pathogen and [64Cu]NODAGA-hJF5 tracer, according to the experimental procedure shown in Figure 1. Forty-eight hours after injection with the pathogen and
humanized tracer, PET/MR imaging shows specific accumulation of the tracer in A. fumigatus-infected lung tissues. Image courtesy of MATHIAS Consortium.

β1,5-galactofuranose (Galf ), an immuno-dominant epitope
present in its (galacto)mannoprotein target (Davies et al., 2017).
The absence of the epitope Galf in mammalian carbohydrates
(Tefsen et al., 2012), in addition to the enhanced imaging
capabilities of the hJF5 antibody, reduces the likelihood of
the [64Cu]NODAGA-hJF5 tracer binding to human structures
non-specifically, while providing a highly sensitive, non-invasive,
procedure for visualizing real-time Aspergillus infections of the
human lung.

While the pre-clinical imaging studies in the mouse model of
disease have shown the enormous potential of the humanized
antibody tracer to detect IPA in the context of neutropenia, a
number of issues have yet to be resolved. The ability of the tracer
to detect chronic semi-invasive aspergillosis syndromes in the
setting of underlying lung diseases such as COPD and cystic
fibrosis has yet to be established, as has its ability to detect IPA
in immunocompetent patients presenting with diffuse bilateral
chest infiltrates, with or without cavity (Pathak et al., 2011).
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In addition, while pre-clinical studies have demonstrated
excellent performance of the JF5 tracer in detecting Aspergillus
lung infections under high inoculum load, its capability in
detecting extra-pulmonary infections involving, for example, the
brain, spleen, and bone (Davoudi et al., 2014), and its ability to
penetrate necrotic tissues, also needs to be determined. However,
given the very low background uptake of the tracer in these
organs (Rolle et al., 2016; Davies et al., 2017; Figure 2), it is
likely that the [64Cu]NODAGA-hJF5 tracer will be able to detect
deep-seated infections in tissues other than the lung.

Despite these caveats, the humanized JF5 antibody represents
an ideal candidate for molecular imaging of IPA in humans
and translation of the antibody-guided imaging technology to
the clinical setting. To this end, the NODAGA-labeled hJF5
antibody has entered mammalian toxicity testing and will enter
first-in-human clinical trials in 2018.

CONCLUSION

Clinical diagnosis of IPA remains extremely challenging, with
non-specific patient symptoms, and insufficient specificity and
sensitivity of diagnostic biomarker tests. Radiological imaging
of the lung is an attractive means of diagnosing invasive fungal
infections since it is a non-invasive procedure, but abnormalities
seen in a chest CT which are suggestive of IPA are not sufficiently
specific for definitive diagnosis of the disease. Attempts have been
to improve radiological detection of IPA using [18F]FDG-PET,
but uptake of the tracer during IPA is indistinguishable from that
seen during cancer, inflammatory reactions, or during bacterial
infections. The specificity of PET has been dramatically improved
through the use Aspergillus siderophores, and mAbs conjugated
to radionuclides, but all studies to date have been conducted in
animal models of IPA.

For translation to the clinical setting, the Aspergillus-specific
mAb JF5 has been humanized using CDR grafting of the
mouse IgG3 heavy and light chain variable fragments into a
human IgG1 framework. The humanized antibody (hJF5) is

currently undergoing toxicity testing prior to clinical trials to
allow immunoPET/MR imaging of IPA in humans with the
Aspergillus-specific PET tracer [64Cu]NODAGA-hJF5. Once the
accuracy of the tracer has been established in human clinical
trials, its cost effectiveness as a hospital diagnostic procedure
for IPA, and its usefulness in monitoring disease in humans
in response to antifungal treatment, will then need to be
established. These are lengthy and costly investigations but,
if successful, may herald a new age in molecular imaging
of IPA, and could act as a paradigm for antibody-guided
imaging of other invasive fungal diseases of humans. As a
platform technology, immuno-PET/MR can be used to image
any invasive fungal disease providing that well-characterized
disease-specific antibodies are available. Highly specific mAbs
have been reported for a number of the most serious mold
pathogens of humans such as Fusarium, Scedosporium, and
Lomentospora (Thornton, 2009, Thornton et al., 2015; Al-
Maqtoofi and Thornton, 2016), enabling molecular imaging of
invasive diseases (fusariosis and scedosporiosis) caused by these
pathogens. However, it is important to note that despite the
unparalleled sensitivity and specificity of immuno-PET/MRI,
the high cost of its development, clinical evaluation, and
implementation in healthcare systems means that it will likely
only be accessible in specialist centers, and will not replace but
rather complement less sophisticated diagnostic tests such as
ELISA, PCR, and LFA.
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