734 research outputs found

    Mask exposure during COVID-19 changes emotional face processing

    Get PDF
    Faces are one of the key ways that we obtain social information about others. They allow people to identify individuals, understand conversational cues, and make judgements about others’ mental states. When the COVID-19 pandemic hit the United States, widespread mask-wearing practices were implemented, causing a shift in the way Americans typically interact. This introduction of masks into social exchanges posed a potential challenge—how would people make these important inferences about others when a large source of information was no longer available? We conducted two studies that investigated the impact of mask exposure on emotion perception. In particular, we measured how participants used facial landmarks (visual cues) and the expressed valence and arousal (affective cues), to make similarity judgements about pairs of emotion faces. Study 1 found that in August 2020, participants with higher levels of mask exposure used cues from the eyes to a greater extent when judging emotion similarity than participants with less mask exposure. Study 2 measured participants’ emotion perception in both April and September 2020 –before and after widespread mask adoption—in the same group of participants to examine changes in the use of facial cues over time. Results revealed an overall increase in the use of visual cues from April to September. Further, as mask exposure increased, people with the most social interaction showed the largest increase in the use of visual facial cues. These results provide evidence that a shift has occurred in how people process faces such that the more people are interacting with others that are wearing masks, the more they have learned to focus on visual cues from the eye area of the face

    Working memory for social information: Chunking or domain-specific buffer?

    Get PDF
    Humans possess unique social abilities that set us apart from other species. These abilities may be partially supported by a large capacity for maintaining and manipulating social information. Efficient social working memory might arise from two different sources: chunking of social information or a domain-specific buffer. We test these hypotheses with functional magnetic resonance imaging (fMRI) by manipulating sociality and working memory load in an n-back paradigm. We observe (i) an effect of load in the frontoparietal control network, (ii) an effect of sociality in regions associated with social cognition and face processing, and (iii) an interaction within the frontoparietal network such that social load has a smaller effect than nonsocial load. These results support the hypothesis that working memory is more efficient for social information than for nonsocial information, and suggest that chunking, rather than a domain-specific buffer, is the mechanism of this greater efficiency

    Antibacterial Properties of a Tri-Sodium Citrate Modified Glass Polyalkenoate Cement

    Get PDF
    Primary deep infection following joint replacement surgery accounts for 7% of all revisions. Glass polyalkenoate cements (GPCs) have previously been shown to exhibit antibacterial properties. The present study had two objectives. The first was to determine if addition of tri-sodium citrate (TSC) to the powder phase of an Al-free GPC (0.04 SrO-0.12 CaO-0.36 ZnO-0.48 SiO2, by mole fraction) enhanced the resultant cement\u27s antibacterial properties against three strains of bacteria that are commonly found in periprosthetic sites following total joint replacements (TJRs); namely, E. coli, B. fragilis, and S. epidermidis. Four cement sets were prepared, which contained 0 wt% TSC (control), 5 wt% TSC, 10 wt% TSC, and 15 wt% TSC. All the TSC-modified cements were found to exhibit large inhibition zones against all the bacterial strains, especially the cement containing 15 wt% TSC against E. coli. The antibacterial properties of the TSC containing GPCs are attributed to the release of Zn and Na ions from the cements and the presence of the TSC. The second objective was to investigate if, when a modified GPC is embedded in a bovine bone model, ionic transfer occurs. It was found that Zn ions migrated from the cement to the surrounding bone, particularly at the cement-bone interface. This is a desirable outcome as Zn ions are known to play a vital role in both bone metabolism and the regeneration of healthy bone. The present results point to the potential clinical benefits of using TSC-modified GPCs in TJRs. © 2009 Wiley Periodicals, Inc

    Slocum gliders provide accurate near real-time estimates of baleen whale presence from human-reviewed passive acoustic detection information

    Get PDF
    © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Baumgartner, M. F., Bonnell, J., Corkeron, P. J., Van Parijs, S. M., Hotchkin, C., Hodges, B. A., Thornton, J. B., Mensi, B. L., & Bruner, S. M. Slocum gliders provide accurate near real-time estimates of baleen whale presence from human-reviewed passive acoustic detection information. Frontiers in Marine Science, 7, (2020):100, doi:10.3389/fmars.2020.00100.Mitigating the effects of human activities on marine mammals often depends on monitoring animal occurrence over long time scales, large spatial scales, and in real time. Passive acoustics, particularly from autonomous vehicles, is a promising approach to meeting this need. We have previously developed the capability to record, detect, classify, and transmit to shore information about the tonal sounds of baleen whales in near real time from long-endurance ocean gliders. We have recently developed a protocol by which a human analyst reviews this information to determine the presence of marine mammals, and the results of this review are automatically posted to a publicly accessible website, sent directly to interested parties via email or text, and made available to stakeholders via a number of public and private digital applications. We evaluated the performance of this system during two 3.75-month Slocum glider deployments in the southwestern Gulf of Maine during the spring seasons of 2015 and 2016. Near real-time detections of humpback, fin, sei, and North Atlantic right whales were compared to detections of these species from simultaneously recorded audio. Data from another 2016 glider deployment in the same area were also used to compare results between three different analysts to determine repeatability of results both among and within analysts. False detection (occurrence) rates on daily time scales were 0% for all species. Daily missed detection rates ranged from 17 to 24%. Agreement between two trained novice analysts and an experienced analyst was greater than 95% for fin, sei, and right whales, while agreement was 83–89% for humpback whales owing to the more subjective process for detecting this species. Our results indicate that the presence of baleen whales can be accurately determined using information about tonal sounds transmitted in near real-time from Slocum gliders. The system is being used operationally to monitor baleen whales in United States, Canadian, and Chilean waters, and has been particularly useful for monitoring the critically endangered North Atlantic right whale throughout the northwestern Atlantic Ocean.Funding for this project was provided by the Environmental Security Technology Certification Program of the U.S. Department of Defense and the U.S. Navy’s Living Marine Resources Program

    Digital Holography Experiments with Degraded Temporal Coherence

    Get PDF
    To simulate the effects of multiple-longitudinal modes and rapid fluctuations in center frequency, we use sinusoidal phase modulation and linewidth broadening, respectively. These effects allow us to degrade the temporal coherence of our master-oscillator laser, which we then use to conduct digital holography experiments. In turn, our results show that the coherence efficiency decreases quadratically with fringe visibility and that our measurements agree with our models to within 1.8% for sinusoidal phase modulation and 6.9% for linewidth broadening

    Organizational influences on patient perceptions of symptom management

    Get PDF
    We tested a theoretical model of the relationships of hospital context, nursing unit structure, and patient characteristics to patients’ perceptions of the extent to which nurses met their expectations for management of troubling symptoms. In our sample of 2,720 patients randomly selected from 278 nursing units in 143 hospitals, we found that patient age was positively associated with patients’ perceptions of symptom management. The proportion of registered nurses as caregivers on the unit was not a significant predictor of symptom management, but better work conditions on the unit (nurses’ autonomy, participation in decision-making, and collaboration with other disciplines [relational coordination]) significantly contributed to patients’ perceptions of better symptom management

    Challenges to the industrial melt-processing of conductive plastics

    Get PDF
    In this work, we investigate the relationship between the timescales available for polymer mobility during processing and post-processing and the electrical resistivity of melt-processed thermoplastics filled with carbon nanoparticles. Post-process annealing below the glass transition temperature was one avenue explored to uplift electrical conductivity. Detailed analysis of available literature on thermoplastics filled with either graphite nanoplatelets or carbon nanotubes, and of relevant processing data suggests that the required timescale for shaping process or post-processing to obtain conductive material needs to be sufficiently longer than that of the base polymer characteristic relaxation time τd. Four factors have been identified that promote the formation of a conductive filler network in thermoplastics: filler loading content, polymer molar mass, processing temperature and processing timescales

    Human populations in the world's mountains: Spatio-temporal patterns and potential controls.

    Get PDF
    Changing climate and human demographics in the world's mountains will have increasingly profound environmental and societal consequences across all elevations. Quantifying current human populations in and near mountains is crucial to ensure that any interventions in these complex social-ecological systems are appropriately resourced, and that valuable ecosystems are effectively protected. However, comprehensive and reproducible analyses on this subject are lacking. Here, we develop and implement an open workflow to quantify the sensitivity of mountain population estimates over recent decades, both globally and for several sets of relevant reporting regions, to alternative input dataset combinations. Relationships between mean population density and several potential environmental covariates are also explored across elevational bands within individual mountain regions (i.e. "sub-mountain range scale"). Globally, mountain population estimates vary greatly-from 0.344 billion (31%) in 2015. A more detailed analysis using one of the population datasets (GHS-POP) revealed that in ∌35% of mountain sub-regions, population increased at least twofold over the 40-year period 1975-2015. The urban proportion of the total mountain population in 2015 ranged from 6% to 39%, depending on the combination of population and urban extent datasets used. At sub-mountain range scale, population density was found to be more strongly associated with climatic than with topographic and protected-area variables, and these relationships appear to have strengthened slightly over time. Such insights may contribute to improved predictions of future mountain population distributions under scenarios of future climatic and demographic change. Overall, our work emphasizes that irrespective of data choices, substantial human populations are likely to be directly affected by-and themselves affect-mountainous environmental and ecological change. It thereby further underlines the urgency with which the multitudinous challenges concerning the interactions between mountain climate and human societies under change must be tackled

    The Wicked Machinery of Government: Malta and the Problems of Continuity under the New Model Administration

    Get PDF
    This is a study focused on the early years of British rule in Malta (1800-1813). It explores the application to the island of the “new model” of colonial government, one based on direct rule from London mediated by the continuation of existing laws and institutions. Systemic deficiencies are identified. These tended to undermine the effectiveness of direct British rule. This study also reveals, in the context of legal and constitutional continuity, unresolved tensions between modernity and tradition. The political stability of the island was damaged and the possibility of continued British possession was threatened
    • 

    corecore