1,250 research outputs found

    Supercritical fluid recycle for surge control of CO2 centrifugal compressors

    Get PDF
    AbstractThis paper presents computer-based design and analysis of control systems for centrifugal compressors when the operating fluid is supercritical CO2.It reports a non-linear dynamic model including a main forward compression line and two different configurations for the recycle antisurge line. Disturbance scenarios are proposed for testing the configurations and performance indicators are suggested to evaluate control performance and power consumption of the compression system.The paper demonstrates that compared to the hot recycle, the process configuration including a cold gas recycle has better overall stability, but higher power consumption and lower values for the control performance indicators. Based on the previous considerations, the paper gives suggestions regarding the choice of the recycle configuration. Moreover it compares subcritical and supercritical compression during surge prevention and highlights the importance of the selection of the gas recycle configuration when full recycle is needed

    Diagnosis of a unit-wide disturbance caused by saturation in a manipulated variable

    Get PDF
    It is well known that faulty control valves with friction in the moving parts lead to limit cycle oscillations which can propagate to other parts of the plant. However, a control loop with healthy valve can also undergo oscillatory behavior. The root cause of a unit-wide oscillation in a distillation column was traced to a pressure control loop in a case study at Mitsui Chemicals. The diagnosis was made by means of a new technique of pattern matching of the time-resolved frequency spectrum using a wavelet analysis tool. The method identified key characteristics shared by measurements at various places in the column and quantified the similarities. Non-linearity was detected in the time trend of the pressure measurement, a result which initially suggested the root cause was a faulty actuator or sensor. Further analysis showed, however, that the source of non-linearlity was periodic saturation of the manipulated variable caused by slack tuning. The problem was remidied by changing the controller tuning settings and the unit-wide disturbance then went away

    Rogue seasonality detection in supply chains

    Get PDF
    Rogue seasonality or unintended cyclic variability in order and other supply chain variables is an endogenous disturbance generated by a company’s internal processes such as inventory and production control systems. The ability to automatically detect, diagnose and discriminate rogue seasonality from exogenous disturbances is of prime importance to decision makers. This paper compares the effectiveness of alternative time series techniques based on Fourier and discrete wavelet transforms, autocorrelation and cross correlation functions and autoregressive model in detecting rogue seasonality. Rogue seasonalities of various intensities were generated using different simulation designs and demand patterns to evaluate each of these techniques. An index for rogue seasonality, based on the clustering profile of the supply chain variables was defined and used in the evaluation. The Fourier transform technique was found to be the most effective for rogue seasonality detection, which was also subsequently validated using data from a steel supply network

    Wireless Communication in Process Control Loop: Requirements Analysis, Industry Practices and Experimental Evaluation

    Get PDF
    Wireless communication is already used in process automation for process monitoring. The next stage of implementation of wireless technology in industrial applications is for process control. The need for wireless networked control systems has evolved because of the necessity for extensibility, mobility, modularity, fast deployment, and reduced installation and maintenance cost. These benefits are only applicable given that the wireless network of choice can meet the strict requirements of process control applications, such as latency. In this regard, this paper is an effort towards identifying current industry practices related to implementing process control over a wireless link and evaluates the suitability of ISA100.11a network for use in process control through experiments

    Optimization of a network of compressors in parallel: Operational and maintenance planning – The air separation plant case

    Get PDF
    A general mathematical framework for the optimization of compressors operations in air separation plants that considers operating constraints for compressors, several types of maintenance policies and managerial aspects is presented. The proposed approach can be used in a rolling horizon scheme. The operating status, the power consumption, the startup and the shutdown costs for compressors, the compressor-to-header assignments as well as the outlet mass flow rates for compressed air and distillation products are optimized under full demand satisfaction. The power consumption in the compressors is expressed by regression functions that have been derived using technical and historical data. Several case studies of an industrial air separation plant are solved. The results demonstrate that the simultaneous optimization of maintenance and operational tasks of the compressors favor the generation of better solutions in terms of total costs

    Practical solutions to multivariate feedback control performance assessment problem: reduced a priori knowledge of interactor matrices

    No full text
    Abstract The research on control loop performance monitoring and diagnostics has been and remains to be one of the most active research areas in process control community. Despite of numerous developments, it remains as a considerably challenging problem to obtain a minimum variance control benchmark from routine operating data for multivariable process since the solution relies on the interactor matrix (or inverse time delay matrix). Knowing the interactor matrix is tantamount to knowing a complete knowledge of process models that are either not available or not accurate enough for a meaningful calculation of the benchmark. However, the order of an interactor matrix (OIM) for a multivariable process, a scalar measure of multivariate time delay, is a relatively simple parameter to know or estimate a priori. This paper investigates the possibility to estimate a suboptimal multivariate control benchmark from routine operating data if the OIM is available. The relation between this suboptimal benchmark and the true multivariate minimum variance control benchmark is investigated. Analytical expressions for the lower and upper bounds of the true multivariate minimum variance are derived. Although not minimum variance control, this benchmark answers important practical questions like ''at least how much potential of the improvement does the control have by tuning or redesigning?'' It is further shown that the proposed suboptimal benchmark is achievable by a practical control provided that the system of interest is minimum phase. Simulation examples illustrate the feasibility of the proposed approach

    Assessment of flexible operation in an LNG plant

    Get PDF
    Process industries are becoming increasingly reliant on electrical power for reasons of efficiency and sustainability. A large industrial site typically has its own power management system to distribute electricity to the process and to manage electrical contingencies such as partial loss of supply. Recent work has illustrated more flexible alternatives to load shedding whereby an industrial process plant can continue to operate at a lower level making use of available electrical power. This paper presents a way for achieving such flexibility in a Liquefied Natural Gas (LNG) plant. It analyzes the consequences for production of varying the consumed power, and assesses the maximum flexibility within the feasible operating envelope of the process. The study has been conducted by modeling and simulation of an LNG plant using the Linde process with three refrigeration cycles. The results also show the relationships between electrical power consumption and production in terms of production rate and product characteristics. They also show that the vapour-liquid equilibrium plays a crucial role in establishing the operating points and setting the boundaries in which the process has to work. Thus, through the assessment and simulation of an LNG plant, this work demonstrates that flexible operation has benefits over alternatives. It achieves more operating points and therefore adds more flexibility

    A Test System Model for Stability Studies of UK Power Grid

    No full text
    The paper presents a test system model to study the effect of variable wind power output on the stability of future power systems. The test system is built upon a future UK transmission system model and it contains different types of generators, HVDC transmission lines, and interconnections. A poorly damped inter-area mode is present in the test system that closely resembles the Scotland-England inter-area mode existing in the UK transmission system. The study system will help to analyze the impact of increased variability in power system operating conditions on the oscillatory mode. © 2013 IEEE

    High yield fusion in a Staged Z-pinch

    Get PDF
    We simulate fusion in a Z-pinch; where the load is a xenon-plasma liner imploding onto a deuterium-tritium plasma target and the driver is a 2 MJ, 17 MA, 95 ns risetime pulser. The implosion system is modeled using the dynamic, 2-1/2 D, radiation-MHD code, MACH2. During implosion a shock forms in the Xe liner, transporting current and energy radially inward. After collision with the DT, a secondary shock forms pre-heating the DT to several hundred eV. Adiabatic compression leads subsequently to a fusion burn, as the target is surrounded by a flux-compressed, intense, azimuthal-magnetic field. The intense-magnetic field confines fusion α\alpha-particles, providing an additional source of ion heating that leads to target ignition. The target remains stable up to the time of ignition. Predictions are for a neutron yield of 3.0×10193.0\times 10^{19} and a thermonuclear energy of 84 MJ, that is, 42 times greater than the initial, capacitor-stored energy
    • …
    corecore