146 research outputs found

    (93)Nb NMR spin echo spectroscopy in single crystal NbSe(3)

    No full text
    International audienceWe report electric field induced phase displacements of the charge density wave (CDW) in a single crystal of NbSe(3) using (93)Nb NMR spin-echo spectroscopy. CDW polarizations in the pinned state induced by unipolar and bipolar pulses are linear and reversible up to at least E = (0.96)E(T). The polarizations have a broad distribution extending up to phase angles of order 60 degrees for electric fields close to threshold. No evidence for polarizations in excess of a CDW wavelength or for a divergence in polarization near ET are observed. The results are consistent with elastic depinning models, provided that the critical regime expected in large systems is not observable

    Vortex Pinball Under Crossed AC Drives in Superconductors with Periodic Pinning Arrays

    Full text link
    Vortices driven with both a transverse and a longitudinal AC drive which are out of phase are shown to exhibit a novel commensuration-incommensuration effect when interacting with periodic substrates. For different AC driving parameters, the motion of the vortices forms commensurate orbits with the periodicity of the pinning array. When the commensurate orbits are present, there is a finite DC critical depinning threshold, while for the incommensurate phases the vortices are delocalized and the DC depinning threshold is absent.Comment: 4 pages, 4 postscript figure

    Optical investigation of the charge-density-wave phase transitions in NbSe3NbSe_{3}

    Full text link
    We have measured the optical reflectivity R(ω)R(\omega) of the quasi one-dimensional conductor NbSe3NbSe_{3} from the far infrared up to the ultraviolet between 10 and 300 KK using light polarized along and normal to the chain axis. We find a depletion of the optical conductivity with decreasing temperature for both polarizations in the mid to far-infrared region. This leads to a redistribution of spectral weight from low to high energies due to partial gapping of the Fermi surface below the charge-density-wave transitions at 145 K and 59 K. We deduce the bulk magnitudes of the CDW gaps and discuss the scattering of ungapped free charge carriers and the role of fluctuations effects

    Incommensuration Effects and Dynamics in Vortex Chains

    Full text link
    We examine the motion of one-dimensional (1D) vortex matter embedded in a 2D vortex system with weak pinning using numerical simulations. We confirm the conjecture of Matsuda et al. [Science 294, 2136 (2001)] that the onset of the temperature induced motion of the chain is due to an incommensuration effect of the chain with the periodic potential created by the bulk vortices. In addition, under an applied driving force we find a two stage depinning transition, where the initial depinning of the vortex chain occurs through soliton like pulses. When an ac drive is added to the dc drive, we observe phase locking of the moving vortex chain.Comment: 4 pages, 4 postscript figure

    Mode-Locking in Driven Disordered Systems as a Boundary-Value Problem

    Get PDF
    We study mode-locking in disordered media as a boundary-value problem. Focusing on the simplest class of mode-locking models which consists of a single driven overdamped degree-of-freedom, we develop an analytical method to obtain the shape of the Arnol'd tongues in the regime of low ac-driving amplitude or high ac-driving frequency. The method is exact for a scalloped pinning potential and easily adapted to other pinning potentials. It is complementary to the analysis based on the well-known Shapiro's argument that holds in the perturbative regime of large driving amplitudes or low driving frequency, where the effect of pinning is weak.Comment: 6 pages, 7 figures, RevTeX, Submitte

    X-Ray Scattering Measurements of the Transient Structure of a Driven Charge-Density-Wave

    Full text link
    We report time-resolved x-ray scattering measurements of the transient structural response of the sliding {\bf Q}1_{1} charge-density-wave (CDW) in NbSe3_{3} to a reversal of the driving electric field. The observed time scale characterizing this response at 70K varies from \sim 15 msec for driving fields near threshold to \sim 2 msec for fields well above threshold. The position and time-dependent strain of the CDW is analyzed in terms of a phenomenological equation of motion for the phase of the CDW order parameter. The value of the damping constant, γ=(3.2±0.7)×1019\gamma = (3.2 \pm 0.7) \times 10^{-19} eV \cdot seconds \cdot \AA3^{-3}, is in excellent agreement with the value determined from transport measurements. As the driving field approaches threshold from above, the line shape becomes bimodal, suggesting that the CDW does not depin throughout the entire sample at one well-defined voltage.Comment: revtex 3.0, 7 figure

    Influence of thermal fluctuations on quantum phase transitions in one-dimensional disordered systems: Charge density waves and Luttinger liquids

    Full text link
    The low temperature phase diagram of 1D weakly disordered quantum systems like charge or spin density waves and Luttinger liquids is studied by a \emph{full finite temperature} renormalization group (RG) calculation. For vanishing quantum fluctuations this approach is amended by an \emph{exact} solution in the case of strong disorder and by a mapping onto the \emph{Burgers equation with noise} in the case of weak disorder, respectively. At \emph{zero} temperature we reproduce the quantum phase transition between a pinned (localized) and an unpinned (delocalized) phase for weak and strong quantum fluctuations, respectively, as found previously by Fukuyama or Giamarchi and Schulz. At \emph{finite} temperatures the localization transition is suppressed: the random potential is wiped out by thermal fluctuations on length scales larger than the thermal de Broglie wave length of the phason excitations. The existence of a zero temperature transition is reflected in a rich cross-over phase diagram of the correlation functions. In particular we find four different scaling regions: a \emph{classical disordered}, a \emph{quantum disordered}, a \emph{quantum critical} and a \emph{thermal} region. The results can be transferred directly to the discussion of the influence of disorder in superfluids. Finally we extend the RG calculation to the treatment of a commensurate lattice potential. Applications to related systems are discussed as well.Comment: 19 pages, 7 figure

    Dynamic ordering and frustration of confined vortex rows studied by mode-locking experiments

    Get PDF
    The flow properties of confined vortex matter driven through disordered mesoscopic channels are investigated by mode locking (ML) experiments. The observed ML effects allow to trace the evolution of both the structure and the number of confined rows and their match to the channel width as function of magnetic field. From a detailed analysis of the ML behavior for the case of 3-rows we obtain ({\it i}) the pinning frequency fpf_p, ({\it ii}) the onset frequency fcf_c for ML (\propto ordering velocity) and ({\it iii}) the fraction LML/LL_{ML}/L of coherently moving 3-row regions in the channel. The field dependence of these quantities shows that, at matching, where LMLL_{ML} is maximum, the pinning strength is small and the ordering velocity is low, while at mismatch, where LMLL_{ML} is small, both the pinning force and the ordering velocity are enhanced. Further, we find that fcfp2f_c \propto f_p^2, consistent with the dynamic ordering theory of Koshelev and Vinokur. The microscopic nature of the flow and the ordering phenomena will also be discussed.Comment: 10 pages, 7 figure, submitted to PRB. Discussion has been improved and a figure has been adde
    corecore