176 research outputs found
Energy-momentum/Cotton tensor duality for AdS4 black holes
We consider the theory of gravitational quasi-normal modes for general linear
perturbations of AdS4 black holes. Special emphasis is placed on the effective
Schrodinger problems for axial and polar perturbations that realize
supersymmetric partner potential barriers on the half-line. Using the
holographic renormalization method, we compute the energy-momentum tensor for
perturbations satisfying arbitrary boundary conditions at spatial infinity and
discuss some aspects of the problem in the hydrodynamic representation. It is
also observed in this general framework that the energy-momentum tensor of
black hole perturbations and the energy momentum tensor of the gravitational
Chern-Simons action (known as Cotton tensor) exhibit an axial-polar duality
with respect to appropriately chosen supersymmetric partner boundary conditions
on the effective Schrodinger wave-functions. This correspondence applies to
perturbations of very large AdS4 black holes with shear viscosity to entropy
density ratio equal to 1/4\pi, thus providing a dual graviton description of
their hydrodynamic modes. We also entertain the idea that the purely
dissipative modes of black hole hydrodynamics may admit Ricci flow description
in the non-linear regime.Comment: 38 pages; minor typos corrected, a few extra references and a note
adde
Epstein-Barr Virus Infection Is Common in Inflamed Gastrointestinal Mucosa
Epstein-Barr virus (EBV) is present in the malignant epithelial cells of 10% of all gastric adenocarcinomas, however localization of the virus in normal gastrointestinal mucosa is largely unexplored. In the current study, we measured EBV DNA and localized viral gene products in gastritis specimens (n=89), normal gastric and colonic mucosa (n=14), Crohn’s disease (n=9), and ulcerative colitis (n=11) tissues
Performance of Three-Biomarker Immunohistochemistry for Intrinsic Breast Cancer Subtyping in the AMBER Consortium
Classification of breast cancer into intrinsic subtypes has clinical and epidemiologic importance. To examine accuracy of immunohistochemistry (IHC)-based methods for identifying intrinsic subtypes, a three-biomarker IHC panel was compared to the clinical record and RNA-based intrinsic (PAM50) subtypes
High levels of Epstein–Barr virus DNA in latently infected gastric adenocarcinoma
Gastric adenocarcinoma is the second leading cause of cancer death worldwide. Epstein-Barr virus (EBV) is present in the malignant cells of approximately 10% of cases. It is unclear whether EBV is being missed in some gastric adenocarcinomas due to insensitive test methods or partial EBV genome loss. In the current study, we screened 113 gastric adenocarcinomas from low and high incidence regions (United States and Central America) for the presence of EBV using a battery quantitative real-time PCR (Q-PCR) assays targeting disparate segments of the EBV genome (BamH1W, EBNA1, LMP1, LMP2, BZLF1, EBER1) and histochemical stains targeting EBV-encoded RNA (EBER), the latent proteins LMP1 and LMP2, and the lytic proteins BMRF1 and BZLF1. EBV DNA was detected by Q-PCR in 48/75 United States cancers (64%) and in 38/38 Central American cancers (100%), which was a significant differrence. EBER was localized to malignant epithelial cells in 8/48 (17%) United States and 3/38 (8%) Central American cancers. Viral loads were considerably higher for EBER-positive versus EBER-negative cancers (mean 162,986 versus 62 EBV DNA copies per 100,000 cells). A viral load of 2,000 copies per 100,000 cells is recommended as the threshold distinguishing EBER-positive from EBER-negative tumors. One infected cancer selectively failed to amplify the LMP2 gene because of a point mutation, while another cancer had an atypical pattern of Q-PCR positivity suggesting deletion of large segments of the EBV genome. Three different viral latency profiles were observed in the cancers based on constant expression of EBER and focal or variable expression of LMP1 or LMP2, without lytic protein expression. We conclude that EBV DNA levels generally reflect EBER status, and a panel of at least two Q-PCR assays is recommended for sensitive identification of infected cancers
Integrated RNA and DNA sequencing reveals early drivers of metastatic breast cancer
Breast cancer metastasis remains a clinical challenge, even within a single patient across multiple sites of the disease. Genome-wide comparisons of both the DNA and gene expression of primary tumors and metastases in multiple patients could help elucidate the underlying mechanisms that cause breast cancer metastasis. To address this issue, we performed DNA exome and RNA sequencing of matched primary tumors and multiple metastases from 16 patients, totaling 83 distinct specimens. We identified tumor-specific drivers by integrating known protein-protein network information with RNA expression and somatic DNA alterations and found that genetic drivers were predominantly established in the primary tumor and maintained through metastatic spreading. In addition, our analyses revealed that most genetic drivers were DNA copy number changes, the TP53 mutation was a recurrent founding mutation regardless of subtype, and that multiclonal seeding of metastases was frequent and occurred in multiple subtypes. Genetic drivers unique to metastasis were identified as somatic mutations in the estrogen and androgen receptor genes. These results highlight the complexity of metastatic spreading, be it monoclonal or multiclonal, and suggest that most metastatic drivers are established in the primary tumor, despite the substantial heterogeneity seen in the metastases
A Six-Gene Signature Predicts Survival of Patients with Localized Pancreatic Ductal Adenocarcinoma
Jen Jen Yeh and colleagues developed and validated a six-gene signature in patients with pancreatic ductal adenocarcinoma that may be used to better stage the disease in these patients and assist in treatment decisions
Alterations of LKB1 and KRAS and risk of brain metastasis: Comprehensive characterization by mutation analysis, copy number, and gene expression in non-small-cell lung carcinoma
Brain metastases are one of the most malignant complications of lung cancer and constitute a significant cause of cancer related morbidity and mortality worldwide. Recent years of investigation suggested a role of LKB1 in NSCLC development and progression, in synergy with KRAS alteration. In this study, we systematically analyzed how LKB1 and KRAS alteration, measured by mutation, gene expression (GE) and copy number (CN), are associated with brain metastasis in NSCLC
Amplification of thymidylate synthetase in metastatic colorectal cancer patients pretreated with 5-fluorouracil-based chemotherapy
Resistance to 5-fluorouracil (5-FU) represents a major contributor to cancer-related mortality in advanced colorectal cancer patients. Genetic variations and expression alterations in genes involved in 5-FU metabolism and effect have been shown to modulate 5-FU sensitivity in vitro, however these alterations do not fully explain clinical resistance to 5-FU-based chemotherapy. To determine if alterations of DNA copy number in genes involved in 5-FU metabolism impacted clinical resistance to 5-FU-based chemotherapy, we assessed thymidylate synthetase (TYMS) and thymidine phosphorylase (TYMP) copy number in colorectal liver metastases. DNA copy number of TYMS and TYMP was evaluated using real time quantitative PCR in frozen colorectal liver metastases procured from 62 patients who were pretreated with 5-FU-based chemotherapy prior to surgical resection (5-FU exposed) and from 51 patients who received no pretreatment (unexposed). Gain of TYMS DNA copy number was observed in 18% of the 5-FU exposed metastases, while only 4% of the unexposed metastases exhibited TYMS copy gain (p=0.036). No significant differences were noted in TYMP copy number alterations between 5-FU exposed and unexposed metastases. Median survival time was similar in 5-FU exposed patients with metastases containing TYMS amplification and those with no amplification. However, TYMS amplification was associated with shorter median survival in patients receiving post-resection chemotherapy (hazard ratio = 2.7, 95% confidence interval = 1.1 to 6.6; p=0.027). These results suggest amplification of TYMS amplification as a putative mechanism for clinical resistance to 5-FU-based chemotherapy and may have important ramifications for the post-resection chemotherapy choices for metastatic colorectal cancer
Prediction of Lung Cancer Histological Types by RT-qPCR Gene Expression in FFPE Specimens
Lung cancer histologic diagnosis is clinically relevant because there are histology-specific treatment indications and contraindications. Histologic diagnosis can be challenging owing to tumor characteristics, and it has been shown to have less-than-ideal agreement among pathologists reviewing the same specimens. Microarray profiling studies using frozen specimens have shown that histologies exhibit different gene expression trends; however, frozen specimens are not amenable to routine clinical application. Herein, we developed a gene expression–based predictor of lung cancer histology for FFPE specimens, which are routinely available in clinical settings. Genes predictive of lung cancer histologies were derived from published cohorts that had been profiled by microarrays. Expression of these genes was measured by quantitative RT-PCR (RT-qPCR) in a cohort of patients with FFPE lung cancer. A histology expression predictor (HEP) was developed using RT-qPCR expression data for adenocarcinoma, carcinoid, small cell carcinoma, and squamous cell carcinoma. In cross-validation, the HEP exhibited mean accuracy of 84% and κ = 0.77. In separate independent validation sets, the HEP was compared with pathologist diagnoses on the same tumor block specimens, and the HEP yielded similar accuracy and precision as the pathologists. The HEP also exhibited good performance in specimens with low tumor cellularity. Therefore, RT-qPCR gene expression from FFPE specimens can be effectively used to predict lung cancer histology
Fatal Pediatric COVID-19 Case With Seizures and Fulminant Cerebral Edema
The novel coronavirus, SARS-CoV-2, can present with a wide range of neurological manifestations, in both adult and pediatric populations. We describe here the case of a previously healthy 8-year-old girl who presented with seizures, encephalopathy, and rapidly progressive, diffuse, and ultimately fatal cerebral edema in the setting of acute COVID-19 infection. CSF analysis, microbiological testing, and neuropathology yielded no evidence of infection or acute inflammation within the central nervous system. Acute fulminant cerebral edema (AFCE) is an often fatal pediatric clinical entity consisting of fever, encephalopathy, and new-onset seizures followed by rapid, diffuse, and medically-refractory cerebral edema. AFCE occurs as a rare complication of a variety of common pediatric infections and a CNS pathogen is identified in only a minority of cases, suggesting a para-infectious mechanism of edema. This report suggests that COVID-19 infection can precipitate AFCE, and highlights the need for high suspicion and early recognition thereof
- …