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Abstract

Background—Classification of breast cancer into intrinsic subtypes has clinical and 

epidemiologic importance. To examine accuracy of immunohistochemistry (IHC)-based methods 

for identifying intrinsic subtypes, a three-biomarker IHC panel was compared to the clinical 

record and RNA-based intrinsic (PAM50) subtypes.

Methods—Automated scoring of estrogen receptor (ER), progesterone receptor (PR) and HER2 

was performed on IHC-stained tissue microarrays (TMAs) comprising 1,920 cases from the 

African American Breast Cancer Epidemiology and Risk (AMBER) consortium. Multiple cores 

(1–6/case) were collapsed to classify cases, and automated scoring was compared to the clinical 

record and to RNA-based subtyping.

Results—Automated analysis of the three-biomarker IHC panel produced high agreement with 

the clinical record (93% for ER and HER2, and 88% for PR). Cases with low tumor cellularity and 

smaller core size had reduced agreement with the clinical record. IHC-based definitions had high 
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agreement with the clinical record regardless of hormone receptor positivity threshold (1% vs. 

10%), but a 10% threshold produced highest agreement with RNA-based intrinsic subtypes. Using 

a 10% threshold, IHC-based definitions identified the basal-like intrinsic subtype with high 

sensitivity (86%), while sensitivity was lower for luminal A, luminal B and HER2-enriched 

subtypes (76%, 40% and 37%, respectively).

Conclusion—Three-biomarker IHC-based subtyping has reasonable accuracy for distinguishing 

basal-like from non-basal-like, while additional biomarkers are required for accurate classification 

of luminal A, luminal B and HER2-enriched cancers.

Impact—Epidemiologic studies relying on three-biomarker IHC status for subtype classification 

should use caution when distinguishing luminal A from luminal B and when interpreting findings 

for HER2-enriched cancers.
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Introduction

Breast cancer is a heterogeneous disease, comprised of distinct tumor subtypes [1]. While 

some epidemiologic studies have used additional markers or assays to define etiologic 

subtypes [2–4], the majority relied on estrogen receptor (ER), progesterone receptor (PR) 

and HER2 to classify breast cancers as hormone receptor (HR) positive, HER2-positive or 

triple negative [5–8]. These studies have identified heterogeneity in breast cancer etiology, 

but some lack of agreement between studies may be attributable to discordant subtype 

classification. Few studies have systematically compared immunohistochemical (IHC), 

clinical record and RNA-based intrinsic subtypes to estimate classification accuracy, 

particularly using tissue microarrays (TMAs) [9, 10].

The advent of automated methods to analyze digital pathology data has begun to support 

high-throughput IHC-based breast cancer subtyping in large epidemiologic studies [11]. 

Simultaneously, RNA-based methods have become more readily available for application in 

formalin-fixed paraffin-embedded (FFPE) tissues [12]. In the present study, we carried out 

IHC staining for ER, PR and HER2 using TMAs containing multiple cores per case for each 

of 1,920 cases in the African American Breast Cancer Epidemiology and Risk (AMBER) 

consortium. Herein, we describe 1) automated digital quantification of this three biomarker 

IHC panel, 2) methods for core-to-case collapsing, and 3) IHC-based agreement with 

clinical scoring in the medical record. Finally, treating PAM50 as the reference standard for 

the purposes of the present analysis, we evaluate 4) agreement between three biomarker 

IHC-based subtype classification and RNA-based PAM50 intrinsic subtyping. While earlier 

studies employed a 10% threshold [13–15], current clinical guidelines recommend a 1% 

threshold for defining ER and PR positivity status [16], and we evaluate the impact of this 

revised threshold on agreement between IHC-based and RNA-based intrinsic subtyping.
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Materials and Methods

Study population and tissue microarray construction

The African American Breast Cancer Epidemiology and Risk (AMBER) consortium is 

comprised of observational studies of breast cancer in African American women [17]. The 

present study includes 1,920 cases within the AMBER consortium for which paraffin-

embedded tissue was available in tissue microarrays (TMAs). Cases were from the Carolina 

Breast Cancer Study Phase 3 (CBCS; n=599), the Black Women’s Health Study (BWHS; 

n=199), and the Women’s Circle of Health Study (WCHS; n=309). In addition, we included 

645 non-AA cases from CBCS and 168 non-AA cases from WCHS (Table 1) as these cases 

were present on the same TMAs and were relevant to our evaluation of subtype 

classification rates. Clinical ER, PR and HER2 status were abstracted from medical records. 

Tumor grade was centrally assigned for CBCS cases by a single pathologist (JG) using the 

Nottingham breast cancer grading system [18]. Each study was approved by Institutional 

Review Boards at participating hospitals and academic institutions.

Paraffin-embedded tumor blocks were requested from participating pathology laboratories 

for each case. Study pathologists (JG, HH, TK) marked hematoxylin & eosin (H&E)-stained 

slides to indicate areas enriched for invasive breast cancer for coring, and TMA construction 

and sectioning were carried out at the Translational Pathology Lab (TPL), University of 

North Carolina at Chapel Hill (UNC) for CBCS and at Roswell Park Cancer Institute (RPCI) 

for BWHS & WCHS. TMA blocks included between one and four tumor cores per case 

measuring 1.0 mm (CBCS), or between one and six tumor cores per case measuring 0.6 mm 

in diameter (BWHS and WCHS; Table 1). For CBCS, top and bottom sections from blocks 

containing a total of 4783 cores were stained with H&E and examined by study pathologists 

(JG or LT) for presence of tumor cells, and 503 cores (11%) lacking sufficient tumor 

cellularity (<50 tumor nuclei per core) were excluded from analyses. For TMA blocks not 

manually evaluated for tumor cellularity (BWHS and WCHS), digital analysis of IHC was 

used to eliminate cores lacking sufficient tumor cellularity (<50 tumor nuclei per core) and, 

of a total of 2060 cores, 290 (14%) were excluded due to low tumor cellularity.

Immunohistochemistry and RNA-based assays

TMA blocks were cut into 5 µM serial sections and IHC staining protocols were optimized 

under pathologist supervision to achieve the best possible agreement with the clinical record. 

Final conditions were independently reviewed by multiple pathologists. Detailed IHC 

methods are described in Supplementary Materials and Methods.

Nanostring assays were used to measure the PAM50 gene signature on 535 cases from 

CBCS. Two cores from the same tumor block used for TMA construction were randomly 

sampled and pooled for analysis. The areas surrounding the holes left by the cores were 

examined by a study pathologist (JG or LT) to confirm the presence of tumor cells in the 

cores used for RNA extraction. RNA was isolated using the RNeasy FFPE kit from Qiagen 

and Nanostring analyses were performed in the Rapid Adoption Molecular (RAM) 

laboratory at UNC. Nanostring probe sets included 200 genes of which 50 were the PAM50 

genes [19] and five were housekeeping genes. Gene expression was median-centered and 

Allott et al. Page 3

Cancer Epidemiol Biomarkers Prev. Author manuscript; available in PMC 2017 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



samples were standardized to zero mean and unit variance. The NanoStringNorm package in 

Bioconductor was used to eliminate samples that did not have sufficient nanostring data 

quality (n=43) and the PAM50 predictor was performed as previously described [19] to 

categorize breast tumors into five intrinsic subtypes (luminal A, luminal B, HER2-enriched, 

basal-like, normal-like). Tumors classified as normal-like may result from extensive normal 

epithelial or stromal content in the tumor [20], so we excluded normal-like tumors (n=29) 

from our analysis. We also excluded 16 cases with equivocal HER2 IHC status, as we could 

not assess IHC-based subtype, giving rise to 447 cases with both IHC and intrinsic 

subtyping data.

Automated digital quantification of a three biomarker IHC-based panel

Automated digital image analysis of IHC staining (Figure 1) was performed using a Genie 

classifier and the Nuclear v9 algorithm (for ER and PR) or Membrane v9 algorithm (for 

HER2; Aperio Technologies, Vista, CA), and is described in more detail in Supplementary 

Materials and Methods.

To validate automated analyses, study pathologists (JG, HH, TK) carried out manual 

reviews of IHC staining within a training set of TMAs. For ER and PR, individual cores 

were classified as negative (<1% positive), borderline (≥1% and <10%) or positive (≥10%). 

For HER2, individual cores were classified as negative (0/1+), positive (3+) or equivocal 

(2+) [21]. Using a 10% threshold to define ER and PR status, agreement between automated 

and manual scoring was 89% for ER and 91% for PR (Supplementary Table S1). After 

excluding cores with equivocal HER2 (2+) status in either the TMA or clinical record 

(n=63), HER2 status agreement between automated and manual scoring was 93%. As 

expected, agreement was slightly lower with additional categories [ER and PR status as 

negative (<1%), borderline (1–10%) or positive (≥10%), HER2 status as negative (0/1+), 

equivocal (2+) or positive (3+), Supplementary Table S1].

Core-to-case collapsing

We tested two core-to-case collapsing methods to define a single ER, PR and HER2 status 

for each case. The first assigned case-level status using a tumor cellularity-weighted 

approach. The weighted average of percent positivity was calculated by summing the 

product of percent positivity and core weight across all cores per case. Core weight was 

defined as the number of tumor nuclei in a given core divided by the total number of tumor 

nuclei across all cores for that case. Thresholds for ER, PR (≥1% and ≥10%) and HER2 

(≥10%) positivity were subsequently applied to define a dichotomous status for each of 

these three markers. Tumor cells staining positive at any intensity were considered positive 

for ER and PR, while only tumor cells staining at the 3+ level were considered positive for 

HER2. Equivocal (2+) HER2 status was defined as <10% of tumor cells staining at the 3+ 

level and ≥10% of tumor cells staining at the 2+ level, while negative HER2 status included 

all other cases. The 10% threshold for HER2 was optimized to agree with manual scoring 

performed according to the then-current HER2 guidelines, indicating that a 30% threshold 

should be used for HER2 [21]. The second core-to-case collapsing method classified the 

case as ER, PR or HER2 positive if any core was positive for ER, PR or HER2, respectively. 
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Core-level ER and PR positivity was defined considering both ≥1% and ≥10% thresholds, 

while HER2 positivity was defined as ≥10% of cells staining at the 3+ intensity level.

IHC-based agreement with clinical scoring in the medical record

Kappa statistics were used to examine case-level agreement between TMA and clinical ER, 

PR and HER2 status in the medical record [22]. Given that the majority of cases (76%) were 

diagnosed prior to ASCO guidelines recommending the use of a 1% threshold for 

classification of HR positivity [16], our primary analysis of case-level agreement between 

TMA and clinical ER, PR and HER2 status was conducted using a 10% threshold to define 

HR positivity status. Analyses were stratified by core-to-case collapsing method in addition 

to core diameter and median cellularity, in order to determine the impact of these factors on 

agreement with the clinical record. We conducted sensitivity analyses using a 1% threshold 

for ER and PR, and excluding cases with only one core.

Agreement between IHC-based and RNA-based subtyping

Using case-level ER, PR and HER2 status, we defined IHC-based subtypes as follows: ER 

or PR positive, HER2 negative (luminal A); ER or PR positive, HER2 positive (luminal B); 

ER and PR negative, HER2 positive (HER2-enriched); ER and PR and HER2 negative 

(basal-like). We also defined IHC-based subtypes using a PR cut point of 20% [23]; ER 

positive or PR>20%, HER2 negative (luminal A); ER or PR positive, HER2 positive or ER 

or PR≤20%, HER2 negative (luminal B). In the absence of Ki67 data, tumor grade may 

distinguish luminal A and HER2-negative luminal B cancers [24], and we explored 

combined grade as follows; ER positive or PR>20%, combined grade I or II, HER2 negative 

(luminal A); ER or PR positive, HER2 positive or ER or PR≤20% or combined grade III, 

HER2 negative (luminal B). Dichotomizing combined grade as I vs. II/III reduced subtype 

classification accuracy, and mitotic grade offered no classification advantages over 

combined grade and therefore these results are not presented. Finally, we defined HER2-

enriched cases as ER negative, HER2 positive, regardless of PR status. Cases with equivocal 

HER2 status remained unclassified and were excluded from subsequent analyses. We 

examined the impact of using 1% and 10% thresholds to define ER and PR status on the 

sensitivity [(true positives/(true positives + false negatives)], specificity [true negatives/(true 

negatives + false positives)], and accuracy [(true positives + true negatives)/total] of TMA 

IHC subtyping with respect to intrinsic subtyping for a subset of cases (n=447).

Statistical analyses were conducted using SAS version 9.3 (SAS Institute, Cary, NC) and 

STATA version 13.0 (Stata Corp., College Station, TX).

Results

IHC-based agreement with the clinical record: impact of core-to-case collapsing method

Using the weighted core-to-case collapsing method to define HR positivity status, agreement 

with the clinical record was 93% for ER and 88% for PR (using a ≥10% threshold; Table 2). 

These results were not impacted by a 1% positivity threshold (data not shown), nor was 

agreement substantially altered when using the any positive core-to-case collapsing method 

(Table 2). However, the any positive method with a 1% threshold resulted in reduced 
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agreement with the clinical record (90% agreement for ER, 85% for PR). As such, we chose 

to proceed with the weighted method and 10% threshold to maximize agreement with 

clinical laboratory data for defining ER and PR positivity in our population.

For HER2, agreement rates were similar for weighted and any positive methods (95% and 

93%, respectively; Table 3). In addition, while both methods had high specificity (95% and 

98% for any positive and weighted methods, respectively), the any positive method had 

higher sensitivity for identifying HER2 positive cases (82% vs. 75%, respectively). 

However, the any positive method produced a higher number of equivocal (2+) cases, 

relative to the weighted method (Table 3). A hybrid of both core-to-case collapsing methods, 

defining HER2 status based on being positive by either the weighted or any positive method, 

maximized sensitivity (78%) and minimized the number of equivocal cases, while 

maintaining similar levels of agreement with the clinical record (Table 3). Moreover, the 

number of equivocal cases using the hybrid method (n=74; 4%) was similar to that of the 

clinical record (n=50; 3%). As such, we chose to proceed with this hybrid method to define 

HER2 status.

For all three biomarkers, agreement between automated analysis of TMAs and the clinical 

record was similar to agreement rates reported between automated analysis of TMAs and 

manual review (Supplementary Table S1).

IHC-based agreement with the clinical record: impact of TMA characteristics

Core cellularity and diameter impacted agreement rates between TMAs and the clinical 

record. Using a 10% threshold to define HR positivity, cases with high tumor cellularity had 

higher agreement with the clinical record for ER and PR, as shown in Table 4. Similarly, 

cases with larger cores had higher ER agreement and PR agreement (Table 4). However, 

neither core cellularity nor diameter substantially impacted agreement with the clinical 

record for HER2, with similar agreement rates for tumors with high and low cellularity, and 

for 1.0 mm and 0.6 mm cores (Table 4). Using a 1% threshold to define ER and PR status 

did not alter agreement rates for cores with high cellularity and 1.0 mm diameter, but 

improved agreement for cores with low cellularity and 0.6 mm diameter (data not shown). 

Excluding cases with only one core (7% of cases) did not impact our findings (data not 

shown).

Agreement between IHC-based and RNA-based PAM50 intrinsic subtyping

For the subset of CBCS cases with intrinsic subtyping data (n=447), agreement between 

three biomarker IHC and RNA-based subtypes is shown in Table 5. Given recent changes in 

clinical thresholds for ER and PR positivity [16], both 1% and 10% thresholds were 

considered to assess agreement. While IHC-based definitions of luminal A (ER or PR 

positive and HER2 negative) and luminal B (ER or PR positive and HER2 positive) resulted 

in high sensitivity for identifying luminal A tumors, specificity was low for both 1% and 

10% thresholds. Conversely, luminal B specificity was high but sensitivity was low, 

regardless of threshold (Supplementary Table S2). Work by Prat and colleagues [25], 

reflected in St. Gallen guidelines [23], indicated that cases with negative HER2 status but 

low (≤20%) PR positivity should be classified as luminal B, as an additional means of 
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distinguishing luminal A from luminal B. Using this definition, the 10% ER threshold 

yielded greatest accuracy (Table 5). St Gallen guidelines also suggest that Ki67 expression 

may distinguish luminal A and HER2-negative luminal B disease [23]. Given that we lacked 

Ki67 data, we explored tumor grade as a surrogate [24]. Overall, gains in sensitivity were 

offset by losses in specificity and vice versa, and accuracy was substantively unchanged 

(~70–80%) regardless of grade (Supplementary Table S3).

HER2-enriched cases identified by RNA-based PAM50 analysis were difficult to accurately 

identify by IHC. Defining HER2-enriched cases as ER and PR negative, HER2 positive 

resulted in low sensitivity, although specificity was high (Supplementary Table S2). We 

found that defining HER2-enriched cases as ER negative and HER2 positive, regardless of 

PR status, resulted in slightly improved agreement with the intrinsic HER2-enriched subtype 

(Table 5). Using a 10% threshold, we found that 26% of HER2-enriched cases identified by 

RNA-based intrinsic subtyping were classified as luminal B by IHC, while the use of a 1% 

threshold gave rise to 43% of HER2-enriched cases identified by RNA-based intrinsic 

subtyping which were classified as luminal B by IHC (Table 5). Finally, utilization of 

clinical HER2 status (which includes ISH data) to identify HER2-enriched cases did not 

improve on agreement rates observed using TMA HER2 status (data not shown).

Triple negative status (ER, PR and HER2 negative) using the three biomarker IHC panel had 

relatively high accuracy for identifying the basal-like intrinsic subtype (Table 5). At the 10% 

threshold, we found that 10% of basal-like cases identified by RNA-based intrinsic 

subtyping were classified as luminal A or B by IHC (Table 5). However, rates of discordant 

classification between IHC and RNA-based intrinsic subtyping were higher at the 1% 

threshold, with 27% of basal-like cases identified by RNA-based intrinsic subtyping 

classified as luminal A or B by IHC (Table 5). Including normal-like intrinsic cases (n=26 

with complete IHC data) in our comparisons between three biomarker IHC and RNA-based 

subtypes did not alter our findings (data not shown).

Discussion

In this consortium comprising three large epidemiologic studies, we found that classification 

of ER, PR and HER2 status using automated digital pathology resulted in high agreement 

with the clinical record for all three biomarkers. Agreement rates were highest when using a 

tumor cellularity-weighted method for core-to-case collapsing and in cases with high tumor 

cellularity. Furthermore, we report that this three biomarker IHC-based panel conferred high 

sensitivity and specificity for identifying tumors classified as basal-like using RNA-based 

intrinsic subtyping. However, our findings highlight the need for further optimization of 

methods to identify HER2-enriched breast cancers and to discriminate between luminal A 

and B cancers, likely through inclusion of new biomarkers like Ki67 and/or other 

biomarkers uniquely present in luminal B or HER2-enriched tumors. As such, we 

recommend that epidemiologic studies relying on ER, PR and HER2 IHC status for subtype 

classification use caution when distinguishing luminal A from luminal B cancers and when 

interpreting findings for HER2-enriched cancers.

Allott et al. Page 7

Cancer Epidemiol Biomarkers Prev. Author manuscript; available in PMC 2017 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



The advent of digital pathology carries potential to advance molecular epidemiologic 

pathology research by providing a platform to obtain high-throughput and high-resolution 

quantitative data. Previous studies based on tumor-bank series have shown that inter-

laboratory agreement rates for ER and PR range from 80–90% [26–28]. Our findings from 

this consortium, which drew from multiple clinical centers across the United States, showed 

that agreement rates were on the high end of this range for both biomarkers, thereby 

providing validation for digital IHC subtyping methods in epidemiologic research. 

Furthermore, our agreement rates for HER2 exceeded previously published inter-laboratory 

agreement rates of ~80% for IHC HER2 staining [29]. These findings may reflect 

improvements over time in IHC methods, improved efforts to ensure antigen stability, and 

other methodological strengths of our work.

While technical factors have been demonstrated to play a role [27, 30, 31], tumor biology 

and molecular factors may also drive discordance in biomarker classification. We and others 

[26, 28] have shown that PR agreement is often lower than that of ER, potentially due to 

more heterogeneous expression within a given tumor, or intratumoral heterogeneity. 

Intratumoral heterogeneity would be expected to pose a greater classification problem for 

cores representing a smaller sample of the tumor (as reflected by lower tumor cellularity 

and/or smaller core diameter); indeed, our findings suggest that agreement rates were lowest 

for PR. This explanation seems less likely to explain HER2 discordance, as neither core size 

nor cellularity was associated with agreement between TMAs and the clinical record. As 

such, intratumoral heterogeneity, in addition to technical factors including TMA 

characteristics, may contribute to the level of agreement between central and clinical 

biomarker classification.

Recent clinical guidelines have lowered the threshold used to define ER and PR positivity 

from 10% to 1%, given evidence that cases with borderline (≥1–<10%) ER and PR 

positivity derive a benefit from endocrine therapy [16]. However, subtype distribution 

within these borderline cases, comprising approximately 6% of total breast cancer cases, is 

not well understood. One study indicated that approximately one quarter of ER borderline 

cases are luminal, while up to half are basal-like [32]. This is in general agreement with our 

findings that 25% of ER borderlines were luminal, and 38% were basal-like. Conversely, 

another study reported higher prevalence of luminals (44%) and lower prevalence of basal-

likes (18%) among ER or PR borderline cases [33], suggesting that biological characteristics 

of the borderline group may vary across study populations or according to technical 

methods. We report that IHC-based surrogate definitions of PAM50 intrinsic subtypes were 

impacted by the threshold for defining ER and PR positivity, with a 1% threshold resulting 

in a greater proportion of basal-like cases classified as luminal A and B by IHC, and of 

HER2-enriched cases classified as luminal B by IHC, relative to the 10% threshold. Given 

the heterogeneity of borderline breast cancers, additional studies should refine classification 

for this group of tumors. Nonetheless, these findings demonstrate that changing clinical 

guidelines for HR positivity may adversely affect the accuracy of intrinsic subtype 

classification using a three biomarker IHC panel, potentially impacting the stability of 

epidemiologic findings over time.

Allott et al. Page 8

Cancer Epidemiol Biomarkers Prev. Author manuscript; available in PMC 2017 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



While it has been proposed that additional biomarkers such as Ki67 are required to 

accurately identify luminal A and luminal B cancers, these data are not commonly available 

in population-based studies. In the absence of Ki67, tumor grade and quantitative PR 

expression may be useful in distinguishing luminal A and luminal B cancers [23, 24]. 

However, we found that maximal accuracy was ~80% for luminal A cases and ~75% for 

luminal B cases with the inclusion of these variables, suggesting that grade and PR 

thresholds are inadequate to accurately distinguish luminal subtypes. IHC is the most 

commonly-used method for clinical classification of HER2-positive tumors, but even with 

inclusion of clinically ISH-positive cases in our HER2-enriched group, the sensitivity of the 

three biomarker IHC panel was low for identifying RNA-based HER2-enriched cases. It is 

well known that amplification or over-expression of an oncogenic pathway can occur via 

multiple molecular events, and a single marker cannot always accurately detect defects in a 

pathway. This molecular heterogeneity may contribute to discordance between the three 

biomarker IHC-based panel and the multi-gene RNA-based panel to identify HER2 pathway 

enrichment. Thus, both molecular and intratumoral heterogeneity may add to technical 

factors in producing discordance between central and clinical analyses of tumor subtype. 

These data underscore that population-based studies with three biomarker IHC-based data 

should avoid making etiologic inferences about luminal A, luminal B and HER2-enriched 

intrinsic subtypes until better IHC-based subtyping methods can be identified for these 

subtypes. In contrast, high sensitivity and specificity of the three biomarker IHC panel for 

identifying basal-like breast cancers in our study suggests that additional biomarkers such as 

CK5/6 and EGFR may not be needed to classify basal-like cancers in epidemiologic studies. 

In sum, the current data suggest that a three biomarker IHC panel is able to distinguish 

between basal-like and luminal, two key etiologic subtypes [34, 35], but that finer resolution 

of intrinsic subtyping in non-basal-like cancers requires additional markers.

Our findings should be considered in the context of strengths and weaknesses of this study. 

First, although cores without invasive carcinoma were excluded based upon manual review 

of top and bottom H&E-stained sections by study pathologists, it is possible that benign 

epithelium or ductal carcinoma in situ (DCIS) was counted as invasive tumor in automated 

IHC quantification. However, high levels of agreement with the clinical record, exceeding 

that of previous studies, mitigate concerns about this potential source of bias. Second, while 

the present analysis offers insights into IHC-based surrogates for intrinsic subtyping within 

the context of a consortium of epidemiologic studies, it is important to note that this study 

represents an incomplete sample of AMBER, specifically representing those for whom we 

had TMAs. Because this sample does not represent the entire population of AMBER, it 

cannot be used to make inferences about the distribution of subtypes within the AMBER 

source population. Third, we had incomplete data on whether tumor blocks used clinically 

were the same blocks provided to our study. Thus, the biospecimens may have differed 

leading to a downward bias in the estimation of agreement between TMAs and the clinical 

record. Strengths of this study include validation of automated staining guided by multiple 

pathologists, availability of a validated RNA-based multi-gene assay for molecular 

classification of tumor subtype, and a large, diverse sample population representing African 

American and Caucasian women.
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In conclusion, we report that automated digital analysis of IHC staining for ER, PR and 

HER2 on TMAs resulted in high agreement with the clinical record, and high sensitivity and 

specificity for identifying basal-like breast cancer cases classified by RNA-based intrinsic 

subtyping. However, we report reduced sensitivity and specificity for identifying luminal A, 

luminal B, and HER2-enriched cancers using IHC-based panels, indicating that additional 

biomarkers are required for IHC-based classification of these intrinsic subtypes.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Immunohistochemical staining and automated scoring of estrogen receptor (ER), 
progesterone receptor (PR), and HER2 on tissue microarrays
Representative slides staining positive for ER (A), PR (D), and HER2 (G) are shown 

alongside higher magnification insets from these same cores (B&C, E&F and H&I, 

respectively). For hormone receptors, negative nuclei are highlighted in blue, low positive in 

yellow, medium positive in orange and strongly positive in red (C for ER; F for PR). The 

nuclear algorithm was trained to recognize epithelial cell and to exclude stromal cell regions 

(shown in gray in C, F) for hormone receptor analyses. The algorithm used for HER2 

analysis evaluated DAB staining intensity in membrane regions (yellow represents 1+, 

orange represents 2+, and red represents 3+ membrane intensity), and black lines highlight 

HER2 negative cells (I). Reduction in the number of stromal cells analyzed is a built-in 

function of the membrane algorithm (see non-segmented cells in the stromal area of Panel I). 

Scale bar (for core images) = 300 µm, scale bar (for magnified images) = 100 µm.
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