316 research outputs found

    R-mode Instability of Slowly Rotating Non-isentropic Relativistic Stars

    Get PDF
    We investigate properties of rr-mode instability in slowly rotating relativistic polytropes. Inside the star slow rotation and low frequency formalism that was mainly developed by Kojima is employed to study axial oscillations restored by Coriolis force. At the stellar surface, in order to take account of gravitational radiation reaction effect, we use a near-zone boundary condition instead of the usually imposed boundary condition for asymptotically flat spacetime. Due to the boundary condition, complex frequencies whose imaginary part represents secular instability are obtained for discrete rr-mode oscillations in some polytropic models. It is found that such discrete rr-mode solutions can be obtained only for some restricted polytropic models. Basic properties of the solutions are similar to those obtained by imposing the boundary condition for asymptotically flat spacetime. Our results suggest that existence of a continuous part of spectrum cannot be avoided even when its frequency becomes complex due to the emission of gravitational radiation.Comment: 10 pages, 4 figures, accepted for publlication in PR

    The second Nutrition and Cancer Networking meeting Nutrition and breast cancer: translating evidence into practice

    Get PDF
    The 2nd Nutrition and Cancer Networking Meeting "Nutrition and Breast Cancer: Translating Evidence into Practice" was held at Newcastle University in May 2022, with support from the Nutrition Society and British Association for Cancer Research. The first meeting in this series was held in Sheffield in 2019(1). The aim of this joint meeting was to bring together researchers with an interest in nutrition and breast cancer, with the programme spanning topics from risk and prevention to nutrition during treatment and beyond. Several key themes emerged, including: the importance of engaging patients in the development of interventions and trials, making trials more accessible to diverse communities; training of clinical staff in nutrition and latest evidence; wider range of compounds should be considered in food composition tables, and; alternative trial designs can be considered for prevention research to reduce financial burden and increase power

    Phytosterol and phytostanol-mediated epigenetic changes in cancer and other non-communicable diseases: a systematic review

    Get PDF
    Phytosterols/phytostanols are bioactive compounds found in vegetable oils, nuts and seeds and added to a range of commercial food products. Consumption of phytosterols/phytostanols reduces levels of circulating LDL-cholesterol, a causative biomarker of CVD, and is linked to a reduced risk of some cancers. Individuals who consume phytosterols/phytostanols in their diet may do so for many years as part of a non-pharmacological route to lower cholesterol or as part of a healthy diet. However, the impact of long term or high intakes of dietary phytosterols/phytostanols has not been on whole-body epigenetic changes before. The aim of this systematic review was to identify all publications that have evaluated changes to epigenetic mechanisms (post-translation modification of histones, DNA methylation and miRNA expression) in response to phytosterols/phytostanols. A systematic search was performed that returned 226 records, of which eleven were eligible for full-text analysis. Multiple phytosterols were found to inhibit expression of histone deacetylase (HDAC) enzymes and were also predicted to directly bind and impair HDAC activity. Phytosterols were found to inhibit the expression and activity of DNA methyl transferase enzyme 1 and reverse cancer-associated gene silencing. Finally, phytosterols have been shown to regulate over 200 miRNA, although only five of these were reported in multiple publications. Five tissue types (breast, prostate, macrophage, aortic epithelia and lung) were represented across the studies, and although phytosterols/phytostanols alter the molecular mechanisms of epigenetic inheritance in these mammalian cells, studies exploring meiotic or transgenerational inheritance were not found

    A source of a quasi--spherical space--time: The case for the M--Q solution

    Full text link
    We present a physically reasonable source for an static, axially--symmetric solution to the Einstein equations. Arguments are provided, supporting our belief that the exterior space--time produced by such source, describing a quadrupole correction to the Schwarzschild metric, is particularly suitable (among known solutions of the Weyl family) for discussing the properties of quasi--spherical gravitational fields.Comment: 34 pages, 9 figures. To appear in GR

    Radiative multipole moments of integer-spin fields in curved spacetime

    Get PDF
    Radiative multipole moments of scalar, electromagnetic, and linearized gravitational fields in Schwarzschild spacetime are computed to third order in v in a weak-field, slow-motion approximation, where v is a characteristic velocity associated with the motion of the source. To zeroth order in v, a radiative moment of order l is given by the corresponding source moment differentiated l times with respect to retarded time. At second order in v, additional terms appear inside the spatial integrals. These are near-zone corrections which depend on the detailed behavior of the source. At third order in v, the correction terms occur outside the spatial integrals, so that they do not depend on the detailed behavior of the source. These are wave-propagation corrections which are heuristically understood as arising from the scattering of the radiation by the spacetime curvature surrounding the source. Our calculations show that the wave-propagation corrections take a universal form which is independent of multipole order and field type. We also show that in general relativity, temporal and spatial curvatures contribute equally to the wave-propagation corrections.Comment: 34 pages, ReVTe

    Geodesics in a quasispherical spacetime: A case of gravitational repulsion

    Full text link
    Geodesics are studied in one of the Weyl metrics, referred to as the M--Q solution. First, arguments are provided, supporting our belief that this space--time is the more suitable (among the known solutions of the Weyl family) for discussing the properties of strong quasi--spherical gravitational fields. Then, the behaviour of geodesics is compared with the spherically symmetric situation, bringing out the sensitivity of the trajectories to deviations from spherical symmetry. Particular attention deserves the change of sign in proper radial acceleration of test particles moving radially along symmetry axis, close to the r=2Mr=2M surface, and related to the quadrupole moment of the source.Comment: 30 pages late

    Double-slit interference pattern from single-slit screen and its gravitational analogues

    Full text link
    The double slit experiment (DSE) is known as an important cornerstone in the foundations of physical theories such as Quantum Mechanics and Special Relativity. A large number of different variants of it were designed and performed over the years. We perform and discuss here a new verion with the somewhat unexpected results of obtaining interference pattern from single-slit screen. This outcome, which shows that the routes of the photons through the array were changed, leads one to discuss it, using the equivalence principle, in terms of geodesics mechanics. We show using either the Brill's version of the canonical formulation of general relativity or the linearized version of it that one may find corresponding and analogous situations in the framework of general relativity.Comment: 51 pages, 12 Figures five of them contain two subfigures and thus the number of figures is 17, 1 Table. Some minor changes introduced, especially, in the reference

    X-Ray Scattering Measurements of the Transient Structure of a Driven Charge-Density-Wave

    Full text link
    We report time-resolved x-ray scattering measurements of the transient structural response of the sliding {\bf Q}1_{1} charge-density-wave (CDW) in NbSe3_{3} to a reversal of the driving electric field. The observed time scale characterizing this response at 70K varies from \sim 15 msec for driving fields near threshold to \sim 2 msec for fields well above threshold. The position and time-dependent strain of the CDW is analyzed in terms of a phenomenological equation of motion for the phase of the CDW order parameter. The value of the damping constant, γ=(3.2±0.7)×1019\gamma = (3.2 \pm 0.7) \times 10^{-19} eV \cdot seconds \cdot \AA3^{-3}, is in excellent agreement with the value determined from transport measurements. As the driving field approaches threshold from above, the line shape becomes bimodal, suggesting that the CDW does not depin throughout the entire sample at one well-defined voltage.Comment: revtex 3.0, 7 figure

    Alignment-Free Phylogenetic Reconstruction

    Get PDF
    14th Annual International Conference, RECOMB 2010, Lisbon, Portugal, April 25-28, 2010. ProceedingsWe introduce the first polynomial-time phylogenetic reconstruction algorithm under a model of sequence evolution allowing insertions and deletions (or indels). Given appropriate assumptions, our algorithm requires sequence lengths growing polynomially in the number of leaf taxa. Our techniques are distance-based and largely bypass the problem of multiple alignment
    corecore