
Alignment-Free Phylogenetic Reconstruction

Constantinos Daskalakis∗ Sebastien Roch†

October 6, 2009

Abstract

We introduce the first polynomial-time phylogenetic reconstruction algorithm under a model of se-
quence evolution allowing insertions and deletions—or indels. Given appropriate assumptions, our al-
gorithm requires sequence lengths growing polynomially in the number of leaf taxa. Our techniques are
distance-based and largely bypass the problem of multiple alignment.
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1 Introduction

We introduce a new efficient algorithm for the phylogenetic tree reconstruction (PTR) problem which rigor-
ously accounts for insertions and deletions.

Phylogenetic background. A phylogenetic tree or phylogeny is a tree representing the speciation history
of a group of organisms. The leaves of the tree are typically existing species. The root corresponds to their
most recent common ancestor (MRCA). Each branching in the tree indicates a speciation event. It is com-
mon to assume that DNA evolves according to a Markovian substitution process on this phylogeny. Under
such a model, a gene is a sequence in {A, G, C, T}k. Along each edge of the tree, each site independently
mutates according to a Markov rate matrix. The length of a branch is a measure of the amount of substitu-
tion along that branch.1 The PTR problem consists in estimating a phylogeny from the genes observed at its
leaves. We denote the leaves of a tree by [n] = {1, . . . , n} and their sequences by σ1, . . . , σn.

The model of sequence evolution above is simplistic: it ignores many mutational events that DNA
undergoes through evolution. At the gene level, the most important omissions are insertions and deletions
of sites, also called indels. Stochastic models taking indels into account have long been known [TKF91,
TKF92], but they are not widely used in practice—or in theory—because of their complexity. Instead, most
practical algorithms take a two-phase approach:

1. Multiple sequence alignment. Site ti of sequence σi and site tj of sequence σj are said to be
homologous if they descend from the same site t0 of a common ancestor u (not necessarily the MRCA)
only through substitutions. In the multiple sequence alignment (MSA) problem, we seek roughly to
uncover the homology relation between σ1, . . . , σn. Typically, the output is represented by a matrix
D of n aligned sequences of equal length with values in {A, G, C, T,−}. Each column of the matrix
corresponds to homologous sites. The state − is called a gap and is used to account for insertions and
deletions. For instance if sequence σl does not have a site corresponding to t0 in u above, then a gap
is aligned with positions ti of σi and tj of σj (which belong to the same column).

2. Phylogenetic tree reconstruction. The matrix D is then cleaned up by removing all columns con-
taining gaps. Let D′ be this new matrix. A standard PTR algorithm is then applied to D′. Note that
substitutions alone suffice to explain D′.

Traditionally, most of the research on phylogenetic methods has focused on the second phase.
In fact, current theoretical analyses of PTR assume that the MSA problem has been solved perfectly. This

has been a long-standing assumption in evolutionary biology. But this simplification is increasingly being
questioned in the phylogenetic literature, where it has been argued that alignment heuristics often create
systematic biases that affect analysis [LG08, WSH08]. Much recent empirical work has been devoted to
the proper joint estimation of alignments and phylogenies [TKF91, TKF92, Met03, MLH04, SR06, RE08,
LG08, LRN+09]. Here, we give the first analysis of an efficient, provably consistent PTR algorithm in
the presence of indels. Our new algorithm suggests that a rough alignment suffices for an accurate tree
reconstruction—bypassing the computationally difficult multiple alignment problem.

Theoretical properties of PTR. In addition to computational efficiency, an important theoretical crite-
rion in designing a PTR algorithm is the so-called sequence-length requirement (SLR). At a minimum, a
reconstruction algorithm should be consistent, that is, assuming a model of sequence evolution, the output
should be guaranteed to converge on the true tree as the sequence length k—the number of samples—goes to

1The precise definition of a branch length depends on the model of evolution. For roughly constant mutation rates, one can think
of the branch length as proportional to the amount of time elapsed along a branch.

1



+∞ [Fel78]. Beyond consistency, the sequence-length requirement—or convergence rate—of a PTR algo-
rithm is the sequence length required for guaranteed high-probability reconstruction. The SLR is typically
given as an asymptotic function of n, the number of leaves of the tree. Of course, it also depends on the
substitution parameters.

A classical result due to Erdös et al. [ESSW99a] states that, for general trees under the assumption that
all branch lengths are bounded by constants, the so-called Short Quartet Method (SQM) has poly(n)-SLR.
The SQM is a particular PTR algorithm based on estimating evolutionary distances between the leaf taxa,
that is, the sum of the branch lengths between species. Such algorithms are known as distance-based meth-
ods. The basic theoretical result behind distance-based methods is the following: the collection of pairwise
evolutionary distances between all species forms a special metric on the leaves known as an additive metric;
under mild regularity assumptions, such a metric characterizes the underlying phylogeny interpreted as an
edge-weighted tree, that is, there is a one-to-one correspondence between additive metrics and phylogenies;
moreover, the mapping between them can be computed efficiently [SS03].

A new approach. In the classical theoretical setting above where the MSA problem is assumed perfectly
solved (we refer to this setting below as the ESSW framework), the evolutionary distance between two
species is measured using the Hamming distance (or a state-dependent generalization) between their respec-
tive sequences. It can be shown that after a proper correction for multiple substitutions (which depends on
the model used) the expectation of the quantity obtained does satisfy the additive metric property and can
therefore serve as the basis for a distance-based PTR algorithm.

Moving beyond the ESSW framework, it is tempting to account for indels by simply using edit distance
instead of the Hamming distance. Recall that the edit distance or Levenshtein distance between two strings
is given by the minimum number of operations needed to transform one string into the other, where an
operation is an insertion, deletion, or substitution of a single character. However, no analytical expression is
known for the expectation of edit distance under standard indel models and computing such an expression
appears difficult—if at all possible. An alternative idea is to compute the maximum likelihood estimator
for the time elapsed between two species given their sequences. But this involves solving a nonconvex
optimization problem and the likelihood is only known to be efficiently computable under a rather unrealistic
assumption known as reversibility [TKF91] (see below).

We use a different approach. We divide the sequences into quantile blocks (the first x%, the second x%,
etc.). We show that by appropriately choosing x above we can make sure that the blocks in different se-
quences essentially “match” each other, that is, they are made of mostly homologous sites. We then compare
the state frequencies in matching blocks and build an additive metric out of this statistic. As we show below,
this is in fact a natural generalization of the Hamming estimator of the ESSW framework. However, unlike
the Hamming distance which can easily be analyzed through standard concentration inequalities, proving
rigorously that our approach works involves several new technical difficulties. We give a quick proof sketch
after the formal statement of our results in Section 1.2.

Related work. For more background on models of molecular evolution and phylogenetics, see, e.g., [GL99,
SS03, Fel04]. Following the seminal results of [ESSW99a], there has been much work on sequence-length
requirement, including [Att99, ESSW99b, HNW99, SS99, CK01, Csu02, SS02, KZZ03, MR06, DMR06,
LC06, DHJ+06, Mos07, GMS08, Roc08, DMR09].

The multiple sequence alignment problem as a combinatorial optimization problem (finding the best
alignment under a given pairwise scoring function) is known to be NP-hard [WJ94, Eli06]. Most heuristics
used in practice, such as CLUSTAL [HS88], MAFFT [KMKM02], and MUSCLE [Edg04], use the idea of
a guide tree, that is, they first construct a very rough phylogenetic tree from the data (using for instance edit
distance as a measure of evolutionary distance), and then recursively construct local alignments produced
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by “aligning alignments.”
To our knowledge, little theoretical work has been dedicated to the joint estimation of alignments and

phylogenies, with the exception of Thatte [Tha06] who gave consistency results for the reversible case in the
limit where the deletion-to-insertion ratio tends to 1. However, no sequence-length requirement is obtained
in [Tha06]. In recent related work, Andoni et al. [ADHR09] considered the problem of reconstructing
ancestral sequences in the presence of indels.

1.1 Model of Sequence Evolution

Phylogeny. A phylogeny is represented by a binary tree T = (V,E), whose leaves L ⊂ V correspond to
extant species, and whose bifurcations denote evolutionary events whereby two new species are generated
from an ancestor. The root of the phylogeny, denoted by r(T ), represents the common ancestor of all the
species in the phylogeny, and we assume that all edges of T are directed away from r(T ); so, if e = (u, v)
is a branch of the phylogeny, u is the parent of v and v is the child of u. Moreover, if v′ is in the subtree of
T rooted at u, we call v′ a descendant of u and u an ancestor of v′.

Along each branch of the phylogeny, the genetic material of the parent species is subject to modifications
that produce the genetic material of its child species. A common biological assumption is that the genetic
material of each species u can be represented by a binary sequence σu = (σ1

u, . . . , σ
Ku
u ) of length Ku over

a finite alphabet—we work here with the binary alphabet {0, 1} for simplicity2—and that the changes to
which σu is subjected along the branch e = (u, v) are described by a Markov process. In particular, the
Markov property implies that, given the sequence σu of u, the sequence σv is independent of the sequences
of the species outside the subtree of T rooted at u.

A simplifying assumption commonly used in phylogenetics is that all species have sequences of the
same length and, moreover, that every site, i.e., every coordinate, in their sequences evolves independently
from every other site. In particular, it is assumed that, along each branch e = (u, v) of the phylogeny,
every site σju of the sequence σu is flipped with probability pe to the value 1 − σju independently from the
other sites. This model is known as the Cavender-Farris-Neyman (CFN) model. A simple generalization to
{A, G, C, T} is known as the Jukes-Cantor (JC) model. See, e.g., [Fel04].

Accouting for indels. In this paper, we consider a more general evolutionary process that accounts for the
possibility of insertions and deletions. Our model is similar to the original TKF91 model [TKF91], except
that we do not enforce reversibility.3 In our model, every edge e = (u, v) of the phylogeny is characterized
by a quadruple of parameters (te; ηe, µe, λe), where te is the evolutionary time between the species u and v,
and ηe, µe and λe are respectively the substitution, deletion and insertion rates. The process by which the
sequence at v is obtained from the sequence at u is defined below. (The process can be simply described as
a continuous-time Markov process [KT81]. We give a full description for clarity.)

Definition 1.1 (Evolutionary Process on a Branch) Given an edge e = (u, v), with parameters (te; ηe, µe, λe),
the sequence σv at v is obtained from the sequence σu at u according to the following Markov procedure:

1. intialize σv := σu, Kv := Ku and t` := te;
/*t` is the remaining time on the edge e*/

2. while t` > 0
2We can also consider richer alphabets, e.g., {A, C, G, T}, without much modification. See the Appendix.
3We do not use an immortal link and we do not assume that the length process is at stationarity. Our techniques can also be

applied to the TKF91 model without much modifications. We leave the details to the reader.
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• let I0, I1, . . ., IKv be exponential random variables with rate λe, D1, . . ., DKv exponential
random variables with rate µe, and M1, . . ., MKv exponential random variables with rate ηe;
suppose that these random variables are mutually independent and let T be their minimum;

• if T > t` break; otherwise: if Ij = T , insert a new site whose value is chosen uniformly at
random from {0, 1} between the sites σjv and σj+1

v of σv;4 if Dj = T , delete the site σjv from
σv; and if Mj = T , replace σjv by 1− σjv;

• update σv according to these changes, and update Kv to reflect the new sequence length; set the
remaining time t` := t` − T ;

In words, the evolutionary process defined above assumes that every site of the sequence σu of the parent
species is, independently from the other sites, subjected to a sequence of evolutionary events that flip its
value; these events are distributed according to a Poisson point process of intensity ηe in the time interval
[0, te]. However, the site may get deleted and therefore not be inherited by the sequence of the node v; this
is determined by whether an exponential random variable of rate µe is smaller than te. While each site of
the parental sequence σu is subjected to this process, new sites are introduced in the space between existing
sites at rate λe, and each of these sites follows a similar process for the remaining time.

Given the evolutionary process on a branch of the phylogeny, the evolutionary process on the whole
phylogeny is defined as follows.

Definition 1.2 (Evolutionary Process) Suppose that every site of the sequence σr(T ) at the root of the phy-
logeny is chosen to be 0 or 1 uniformly at random. Recursively, if σu is the sequence at node u and e = (u, v)
is an edge of the phylogeny, the sequence σv at node v is obtained from the sequence σu by an application
of the evolutionary process on a branch described by Definition 1.1.

For ease of exposition, we present our proof in the special case when the substitution, insertion and
deletion rates are the same on all edges of the phylogeny. We discuss the more general case in the Appendix.

Definition 1.3 (Molecular Clock Assumption) Under the molecular clock assumption, there exist η, µ and
λ such that ηe = η, µe = µ and λe = λ, for all e.

Notation. In the sequel, we label the leaves of the phylogeny with the positive integers 1, 2, . . ., n, so that
L = {1, . . . , n}, and the root r(T ) of the phylogeny with 0.

1.2 Main Result

Statement of results. We begin with a consistency result.

Theorem 1 (Consistency) Assume that 0 < te, ηe < +∞, for all e ∈ E. Moreover, assume that the indel
rates satisfy λe < µe for all e ∈ E. Under these assumptions, there exists an algorithm solving the phylo-
genetic reconstruction problem (that is, returning the correct tree) with probability of failure approaching 0
as the sequence length at the root of the tree goes to +∞.

Our main result is the following. For simplicity we work under the symmetric two-state case and assume
that the Molecular Clock Assumption holds. We show in Section D that these assumptions are not necessary
for our results to hold.

4Clearly, if j = 0, then σjv is undefined and, if j = Kv , then σj+1
v is undefined.
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Theorem 2 (Main Result: Two-State Ultrametric Case) Assume there exist constants 0 < f, g < +∞,
independent of n, such that all branch lengths te, e ∈ E, satisfy f < te < g. Moreover, assume that ηe = η,
for all e ∈ E, where η is bounded between two constants η > 0 and η̄ < +∞ independent of n, and that the
indel rates satisfy λe = λ, µe = µ, for all e ∈ E, and λ < µ = O(1/ log n). Under the assumptions above,
there exists a polynomial-time algorithm solving the phylogenetic reconstruction problem (that is, returning
the correct tree) with probability of failure O

(
n−β

′
)

, if the root sequence has length kr = polyβ′(n).

Remark 1.4 (Branch Lengths) Our assumption that all branch lengths te, e ∈ E, satisfy f < te < g is
standard in the sequence-length requirement literature following the seminal work of [ESSW99a].

Remark 1.5 (Indel Rates) Under our assumptions about the branch lengths given in Theorem 2, it follows
(see the proof of Theorem 2 in Section C) that the evolutionary time from the root of the tree to the leaves
is Θ(log n). This implies (see the proof of Lemma 3.2) that as long as λ < µ = O(1/ log n), a constant—
independent of n but potentially arbitrarily small, say 1 in a 100—fraction of the sites of the root sequence
“survive” all the way to the leaves of the tree with high probability. Theorem 2 implies that this constant
fraction of surviving sites provides sufficient information for the phylogenetic reconstruction problem to be
solvable. On the other hand, if the indel rates are significantly higher than 1/ log n, the sequences at the
leaves of the tree may experience wild variations in length—a case which appears difficult to analyze.

Remark 1.6 (Supercritical Case) For convenience, our result is stated for the case µ > λ which is the
most relevant in practice. Our algorithm can be extended easily to the cases µ < λ and µ = λ. We leave
the details to the reader.

Proof sketch. As we noted before, unlike the classical setting where the Hamming distance can be an-
alyzed through standard concentration inequalities, proving rigorously that our approach works involves
several new technical difficulties. The proof goes through the following steps:

1. Expectations. We first compute expectations of block statistics, which involve analyzing a continuous-
time Markov process. We use these calculations to define an appropriate additive metric based on
correlations between blocks.

2. Sequence length and site displacements. We give bounds on how much sequence lengths vary
across the tree, through a moment-generating function argument. Using our bounds on the sequence
length process, we bound the worst-case displacements of the sites. Namely we show that, under our
assumptions, all sites move by at most O(

√
k log k).

3. Sequence Partitioning. We divide each sequence in blocks of size roughly kζ for ζ > 1/2, where k
is the sequence length at the root. From our bounds on site displacements, it follows that the blocks
roughly match across different sequences. In particular, we bound the number of homologous sites
between matching blocks with high probability and show that the expected correlation between these
blocks is approximately correct.

4. Concentration. Finally, we show that our estimates are concentrated. The concentration argument
proceeds by conditioning on the indel process satisfying the high-probability conditions in the previ-
ous points.

The crux of our result is the proper estimation of an additive metric. With such an estimation procedure in
hand, we can use a standard distance-based approach to recover the phylogeny.
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Organization. The rest of the paper is organized as follows. The evolutionary distance forming the basis
of our approach is presented in Section 2. We describe our full distance estimator in Section 3 and prove its
concentration in the same section. Extensions are described briefly in the Appendix.

2 Evolutionary Distances

In this section, we show how to define an appropriate notion of “evolutionary distance” between two species.
Although such distances have been widely used in prior phylogenetic work and have been defined for a
variety of models [SS03, Fel04], to our knowledge our definition is the first that applies to models with
indels. We begin by reviewing the standard definition in the indel-free case and then adapt it to the presence
of indels. Our estimation procedure is discussed in Section 3. Throughout, we assume µ > λ.

2.1 The Classical Indel-free Case

Suppose first that λe = µe = 0 for all e, that is, there is no indel. In that case, the sequence length remains
fixed at k and the alignment problem is trivial. Underlying all distance-based approaches is the following
basic definition.

Definition 2.1 (Additive Metric) A phylogeny is naturally equipped with a so-called additive metric on the
leaves D : L × L → (0,+∞) defined as follows ∀a, b ∈ L, D(a, b) =

∑
e∈PT (a,b) ωe, where PT (a, b) is

the set of edges on the path between a and b in T and where ωe is a nonnegative function of the parameters
on e—in our case, te, ηe, λe, and µe. For instance, a common choice for ωe would be ωe = ηete in which
caseD(a, b) is the expected number of substitutions per site between a and b. OftenD(a, b) is referred to as
the “evolutionary distance” between species a and b. Additive metrics are characterized by the following
four-point condition: for all a, b, c, d ∈ L, D(a, b) +D(c, d) ≤ max{D(a, c) +D(b, d),D(a, d) +D(b, c)}.
Moreover, assuming ωe > 0 for all e ∈ E, it is well-known that there exists a one-to-one correspondence
betweenD and T as a weigthed tree with edge weights {ωe}e∈E . We will discuss algorithms for constructing
T from D in Section C. For more background on tree-based metrics, see [SS03].

Definition 2.1 implies that phylogenies can be reconstructed by computing D(a, b) for all pairs of
leaves a, b ∈ L. Assume we seek to estimate the evolutionary distance between species a and b using
their respective sequences. In a first attempt, one might try the (normalized) Hamming distance between
σa = (σ1

a, . . . , σ
k
a) and σb = (σ1

b , . . . , σ
k
b ). However, the expected Hamming distance—in other words, the

probability of disagreement between a site of a and b—does not form an additive metric as defined in Def-
inition 2.1. Instead, it is well-known that an approriate estimator is obtained by “correcting” the Hamming
distance for “multiple” substitions. Denoting by Ĥ(σa, σb) the Hamming distance between σa and σb, a
Markov chain calculation shows thatD(a, b) = −1

2 log(1−2E[Ĥ(σa, σb)]), with the choice ωe = ηete. See
e.g. [Fel04]. In a distance-based reconstruction procedure, one first estimates D with

D̂(a, b) = −1
2

log(1− 2Ĥ(σa, σb)), (1)

and then applies one of the algorithms discussed in Section C below. The sequence-length requirement of
such a method can be derived by using concentration results for Ĥ [ESSW99a, Att99].

2.2 Taking Indels into Account

In the presence of indels, the estimator (1) based on the Hamming distance is difficult to apply. One has to
first align the sequences, which cannot be done perfectly and causes biases and correlations that are hard to
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analyze. Alternatively, one could try a different string distance such as edit distance. However, computing
the expectation of edit distance under indel models appears difficult.

We use a different approach involving correlations between state frequencies. We will eventually apply
the estimator to large sub-blocks of the sequences (see Section 3), but we first describe it for the full sequence
for clarity. For a node u, let Ku be the (random) length of the sequence at u and Zu, the number of 0’s in the
sequence at u. Then, our distance estimator is D̂(a, b) =

(
Za − 1

2Ka

) (
Zb − 1

2Kb

)
. We now analyze the

expectation of this quantity. For u ∈ V , we let ∆u = Zu − 1
2Ku, be the deviation of Zu from its expected

value (conditioned on the sequence length).

Single channel. Suppose T is made of a single edge from the root r to a leaf a with parameters t, η, λ, µ.
Assume first that the original sequence length is kr = 1. Let Ka be the length of the sequence at a. Then,
by Markov chain calculations [AN72, Section III.5], it can be shown that the moment-generating function
of Ka is

F (s, t) ≡ E
[
sKa

]
=
µ(s− 1)− e(µ−λ)t(λs− µ)
λ(s− 1)− e(µ−λ)t(λs− µ)

. (2)

By differentiating F (s, t) we can derive

E[Ka] = e−(µ−λ)t, (3)

and
Var[Ka] =

µ+ λ

µ− λ [e−(µ−λ)t − e−2(µ−λ)t]. (4)

Let K∗a be the number of “new” sites at a, that is, excluding the original site if it survived. (We ignore the
substitutions for the time being.) The probability that the original site survives is e−µt. Then,

E [K∗a ] = E [Ka − 1{original site survives}] = e−(µ−λ)t − e−µt,

by linearity of expectation.
We now take into account the substitutions. Assume that the original sequence length at r is a random

variableKr and that the sequence at r is i.i.d. uniform. Denote by Zr the number of 0’s at r. The probability
that a site in r that is still surviving in a has flipped its value is

p = P[ state flips odd number of times in time t ] =
+∞∑
j=0

e−ηt
(ηt)2j+1

(2j + 1)!
= e−ηt sinh ηt =

1− e−2ηt

2
.

Also, note that a new site created along the path between r and a has equal chance of being 0 or 1 at the
end of the path. Then, we have:

Lemma 2.2 (Single Channel: Expected Deviation) The following holds: E[∆a |Kr, Zr] = e−(2η+µ)t∆r.

Fork channel. Consider now a “fork” tree, that is, a root r from which emanates a single edge eu = (r, u)
which in turn branches into two edges ea = (u, a) and eb = (u, b). For x = a, b, u, we denote the parameters
of edge ex by tx, λx, µx, ηx. Our goal is to compute E[D̂(a, b)] assuming that the sequence length at the root
is kr. We use (7), the Markov property and the fact that Zu conditioned onKu is a binomial with parameters
1/2 and Ku. We get:

Lemma 2.3 (Fork Channel: Expected Distance) The following holds:

E
[
D̂(a, b)

]
= e−(2ηa+µa)tae−(2ηb+µb)tbe−(µu−λu)tu kr

4
.
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Molecular clock. We specialize the previous result to the Molecular Clock Assumption. That is, we
assume, for x = a, b, u, that λx = λ, µx = µ, and ηx = η. Note that by construction ta = tb (assuming
species a and b are contemporary). We denote t = ta and t̄ = tu + ta. Denoting κ = kre−(µ−λ)t̄

4 , we then
get:

Lemma 2.4 (Molecular Clock: Expected Distance) The following holds: E
[
D̂(a, b)

]
= e−(4η+µ+λ)tκ.

Letting β = 4η + µ + λ, we get that −2 log E[κ−1D̂(a, b)] = 2βt, which is the evolutionary distance
between a and b with the choice ωe = βte. Therefore, we define the following estimator D̂∗(a, b) =
−2 log κ−1D̂(a, b), where we assume that µ, λ, η, κ are known.

3 Distance Computation

We now show how to estimate the evolutionary distance between two species by decomposing the sequences
into large blocks which serve as roughly independent samples. We use the following notation: Mt =
e−(µ−λ)t, Dt = e−µt, δ = µ− λ, φ = µ+ λ, and Γt = λδ−1(1−Mt).

Remark 3.1 Under our main assumptions, the quantities Mt, Dt, and Γt are essentially constants, that is,
O(1). See Section C. We use this fact throughout this section.

3.1 Concentration of the Indel Process

Sequence length. We first show that the sequence length is concentrated. Let T be single channel consist-
ing of edge e = (r, a). Let kr be the length at r.

Lemma 3.2 (Single Channel: Large Deviations of Sequence Length) For all γ > 0, there exists a con-
stant c = c(Mt,Γt; γ) > 0, such that, for all k̂r ≥ kr, with probability at least 1− k̂−γr ,

Ka = krMt ± c
√
k̂r log k̂r.

Correlated sites. Now let T be the fork channel consisting of nodes r, u, a and b as in Figure A.1. Assume
that a and b are contemporary, call t the time separating them from u, and denote by Sab the number of
sites in a and b that are jointly surviving from u. These are the sites that produce correlation between the
sequences at a and b. All other sites are essentially noise. We bound the large deviations of Sab.

Lemma 3.3 (Fork Channel: Large Devations of Jointly Surviving Sites) Condition on the sequence length
at u being ku. Then, for all γ > 0, there exists a constant c = c(Dt; γ) > 0, such that, for all k̂u ≥ ku, with
probability at least 1− k̂−γu ,

Sab = kuD
2
t ± c

√
k̂u log k̂u.

3.2 Sequence Partitioning

From Lemma 3.2, it follows that the sites of the root sequence (or of an internal sequence) remain fairly close
to their expected position at the leaves. We take advantage of this fact by dividing each sequence into blocks
of size asymptotically larger than the typical displacement implied by Lemma 3.2. As a result, matching
blocks in different sequences share a significant fraction of sites. Moreover, distinct blocks are roughly
independent. We estimate the evolutionary distance between two leaves by comparing the site frequencies
in matching blocks. This requires some care as we show next.

Consider the fork channel. We seek to estimate the evolutionary distance D̂(a, b) between a and b
(normalized by the sequence length at u).
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Partitioning the leaf sequences. Let k0 be some deterministic length (to be determined), and consider the
first k0 sites in the sequences σa and σb at the nodes a and b respectively. If the sequence at a or b has length
smaller than k0, we declare that our distance estimate D̃(a, b) (see below) is +∞.

We divide the leaf sequences into L blocks of length ` where ` = dkζ0e, for some 1
2 < ζ < 1 to be

determined later, and L = bk0/`c. We let k′0 = `L. For all i = 1, . . . , L, we define the i-th block σa,i of a
to be the subsequence of σa ranging from position (i− 1)`+ 1 to position i`. We let Za,i be the number of
zeros inside σa,i and define the block deviations ∆a,i = Za,i− `

2 , for all i = 1, . . . , L. And similarly for the
sequence at b.

Using the above notation we define our distance estimator next. Assume that L is even. Otherwise, we
can just drop the last block in the above partition. Our estimator is the following:

D̃(a, b) =
2
L

L/2−1∑
j=0

∆a,2j+1∆b,2j+1.

Notice that in our summation above we skipped every other block in our sequence partition to avoid over-
lapping sites and hence decrease potential correlations between the terms in the estimator. In the rest of this
section, we analyze the properties of D̃(a, b). To do this it is helpful to consider the sequence at u and the
events that happened in the channels defined by the edges (u, a) and (u, b).

Partitioning the ancestral sequence. Let us choose `u to be the largest integer satisfying

`uMt ≤ `. (5)

Suppose that the sequence σu at node u is not shorter than k′u = (L − 1)`u, and define the i-th ancestral
block σu,i of u to be the subsequence of σu ranging from position (i − 1)`u + 1 to position i`u, for all
i ≤ L− 1. Given Lemma 3.2, the choice of `u in (5) is such that the blocks of u and the corresponding
blocks at a and b roughly align.

In order to use the expected evolutionary distance as computed in Lemma 2.4, we define an “interior”
ancestral block which is guaranteed with high probability to remain entirely “inside” the corresponding leaf
block. Let δu =

⌈
L + c

Mt

√
k′u log k′u

⌉
, where c is the maximum of the constants defined in the proof of

Lemma 3.2 and Lemma 3.3. (The L = o(
√
k0) in δu is needed only when (5) is a strict inequality. See the

proof of Lemma 3.4.) We define the i-th (ancestral) interior block σ′u,i of u to be the subsequence of σu,i
ranging from position (i−1)`u+δu of σu to position i`u−δu. Notice that δu ∼

√
k0 log k0, while `u ∼ kζ0 .

Therefore, for k0 > k∗0 , where k∗0 = k∗0(µ, λ, t, γ) > 0 is sufficiently large, (i − 1)`u + δu � i`u − δu so
that the sequence σ′u,i is well-defined.

Also, for all i = 1, . . . , L − 1, we define x′a,i, y
′
a,i to be the position of the leftmost, respectively

rightmost, site in the sequence σa descending from the site at position (i− 1)`u + δu, respectively i`u − δu
of σu. Similarly we define x′b,i and y′b,i. Given this notation, we define the following “good” event

E ′1 =
{
∀i ≤ L− 1 : (i− 1)` < x′a,i, x

′
b,i < (i− 1)`+ 2Mtδu, i`− 2Mtδu < y′a,i, y

′
b,i < i`

}
. (6)

Intuitively, when the event E ′1 holds, all descendants of the interior block σ′u,i are located inside the blocks
σa,i and σb,i respectively (and they do not shrink much).

To argue about block independence, we also define the exterior block σ′′u,i of u to be the subsequence of
σu,i ranging from position (i− 1)`u − δu of σu to position i`u + δu with corresponding positions x′′a,i, y

′′
a,i,

x′′b,i and y′′b,i and good event E ′′1 defined similarly as above.
We show that the event E1 = E ′1 ∪ E ′′1 holds with high probability, conditioned on the sequence length

Ku at u being at least k′u. Figure A.2 shows the structure of the indel process in the case that the event E1

holds.
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Lemma 3.4 (Interior/Exterior Block Is Inside/Outside Leaf Block) Conditioned on the event {Ku ≥ k′u},
we have

P[E1] ≥ 1− 16L
(

1
k′u

)γ
.

Block correlation. Let Sab,i be the number of common sites in the blocks σa,i and σb,i that are jointly
surviving from u. Similarly we define S′ab,i and S′′ab,i where, for ξ = a, b, σ′ξ,i (σ′′ξ,i) denotes the subsequence
of σξ ranging from position x′ξ,i (x′′ξ,i) to position y′ξ,i (y′′ξ,i). We define a good event for Sab,i as

E2 = {∀i ≤ L− 1 : `uD2
t − 3Mtδu ≤ Sab,i ≤ `uD2

t + 3Mtδu}.
Lemma 3.5 (Jointly Surviving Sites in Blocks) Conditioned on the event {Ku ≥ k′u}, we have

P[E2] ≥ 1− 18L
(

1
k′u

)γ
.

3.3 Estimation Guarantees

We are now ready to analyze the behavior of our estimate D̃(a, b). In this subsection we compute the
expectation and variance of D̃(a, b). We denote by I a realization of the indel process (but not of the
substitution process) on the paths between u and a, b. We denote by E the event such that {Ku ≥ k′u}, E1,
and E2 are satisfied. Suppose that k0 > k∗0 .

Lemma 3.6 (Block Independence) Conditioning on I and E , the variables {∆a,2j+1∆b,2j+1}L/2−1
j=1 are

mutually independent.

Lemma 3.7 (Expected Correlation under Good Event) We have

E[∆a,i∆b,i | I, E ] =
1
4
e−4ηte−2µt`u ±O

(√
k0 log k0

)
.

Lemma 3.8 (Variance under Good Event) We have Var[∆a,i∆b,i | I, E ] ≤ 3
16`

2.

Lemma 3.9 (Distance Estimate) We have

E
[
D̃(a, b) | I, E

]
=

1
4
e−(4η+µ+λ)t`±O

(√
k0 log k0

)
,

and Var
[
D̃(a, b) | I, E

]
≤ 3

8
1

bk1−ζ
0 c

`2. In particular, the standard deviation STD
[
D̃(a, b) | I, E

]
=

O

(
k

3ζ−1
2

0

)
= o(
√
k0), for ζ > 1/2 small enough.

3.4 Concentration

We now show that our distance estimate is concentrated. For notational convenience, we denote by P∗u the
probability measure induced by conditioning on the event {Ku ≥ k′u}. Recall that the event E is contained
in {Ku ≥ k′u}.
Lemma 3.10 (Concentration of Distance Estimate) Let α > 0 be such that ζ − α > 1/2, and β =
1− ζ − 2α > 0, for ζ > 1/2 small enough. Then for k0 large enough

P∗u
[∣∣∣∣4` D̃(a, b)− e−(4η+µ+λ)t

∣∣∣∣ > 1
kα0

]
≤ O

(
1

kβ0

)
.

The proofs of Theorems 1 and 2 can be found in Section C.
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[ESSW99a] P. L. Erdös, M. A. Steel, L. A. Székely, and T. A. Warnow. A few logs suffice to build (almost)
all trees (part 1). Random Struct. Algor., 14(2):153–184, 1999.
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A Figures

r

a b

u

Figure A.1: The Fork Channel

�u − 2δu

�u + 2δu

exterior block boundaryinterior block boundary

blocks have length �u

sequence at u

sequence at a
blocks have length � ≈ �uMt

- the descendants of the exterior block of u encompass the whole block of a, w.h.p
- the descendants of the interior block of u fall inside the block of a, w.h.p

Under event E1:

- the windows of boundary uncertainty have length 2δuMt.

Figure A.2: Under the event E1 the descendants of the interior blocks of σu fall inside the corresponding
blocks of σa; the descendants of the exterior blocks of σu contain all surviving sites inside the corresponding
blocks of σa; the windows of uncertainty have length 2Mtδu.
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B Omitted Proofs

Proof of Lemma 2.2: We have

E[∆a |Kr, Zr] = E
[(
Za −

1
2
Ka

)
|Kr, Zr

]
= Zre

−µt(1− p) + (Kr − Zr)e−µtp
+Kr(e−(µ−λ)t − e−µt)1

2
−Kre

−(µ−λ)t 1
2

= Zr(1− 2p)e−µt − 1
2
Kr(1− 2p)e−µt

= e−2ηte−µt∆r, (7)

where on the first two lines:

1. the first term is the number of original 0’s surviving in state 0;

2. the second term is the number of original 1’s surviving in state 0;

3. the third term is the number of new sites surviving in state 0;

4. the fourth term is half the sequence length at a given the length at r.

�

Proof of Lemma 2.3: We have

E
[
D̂(a, b)

]
= E [∆a∆b]

= E [E [∆a∆b |Ku, Zu]]
= E [E [∆a |Ku, Zu] E [∆b |Ku, Zu]]
= e−2ηatae−µatae−2ηbtbe−µbtbE

[
∆2
u

]
= e−2ηatae−µatae−2ηbtbe−µbtbE

[
E
[
∆2
u |Ku

]]
= e−2ηatae−µatae−2ηbtbe−µbtbE

[
Ku

4

]
= e−2ηatae−µatae−2ηbtbe−µbtb

e−(µu−λu)tukr
4

,

where we used (3) and Lemma 2.2. �

Remark B.1 Although we stated Lemma 3.2 for the full sequence, it will also be needed for “half-sequences”
and “blocks.” In particular, we use the previous lemma to track the position of sites. In that context, one
should think of kr as the position of a site in r and Ka, as its position in a. Then we can use k̂r for the full
sequence length at r. See Section 3.2.

Proof of Lemma 3.2: We can think of Ka as

Ka =
kr∑
i=1

Ka,i,

where Ka,i is the number of sites generated by a single site of the sequence at r. Intuitively, Ka,i is the
number of sites that were inserted between the sites i and i+ 1 of the sequence at r, plus the site at position
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i itself if it survived. Clearly the variables {Ka,i}i are mutually independent. Using (3) and (4) we obtain
that

E[Ka] = krMt

and
Var[Ka] = krMt[1−Mt]

φ

δ
.

For ε > 0, by Markov’s inequality we have

P[Ka ≥ krMt + krε] ≤ s−kr(Mt+ε)E[sKa ] =
(
s−(Mt+ε)E[sKa,1 ]

)kr
.

We take s = 1 + Cε for C > 0 to be determined. By a Taylor expansion around ε = 0, we have

E[sKa,1 ] = 1 +Mt(Cε) +MtΓt(Cε)2 +OMt,Γt(ε
3),

s−(Mt+ε) = 1− (Mt + ε)(Cε) +
(Mt + ε)(Mt + ε+ 1)

2
(Cε)2 +OMt(ε

3),

and

s−(Mt+ε)E[sKa,1 ] = 1− ε(Cε) +MtΓt(Cε)2 +
(Mt + ε)(Mt + ε+ 1)

2
(Cε)2

−(Mt + ε)Mt(Cε)2 +OMt,Γt(ε
3).

Note that the second term on the right hand side depends on C whereas the remaining terms depend on C2.
Taking C = C(Mt,Γt; γ) > 0 small enough and c = c(Mt,Γt; γ) > 0 large enough we get for

ε = c

√
log k̂r
kr

,

that

P
[
Ka ≥ krMt + c

√
k̂r log k̂r

]
≤ P[Ka ≥ krMt + krε]

≤ k̂−γr ,

as kr goes to +∞.
A similar inequality holds for the other direction. �

Proof of Lemma 3.3: Each site in u survives in a with probability Dt. The same holds for b independently.
The result then follows from Azuma’s inequality. �

Proof of Lemma 3.4: It follows from Lemma 3.2 that the leftmost descendant of the site at position (i −
1)`u + δu of σu is located inside the sequence of node a at position at least

Mt((i− 1)`u + δu)− c
√
k′u log k′u > Mt ((i− 1)`u + L)

> (i− 1)`,

with probability ≥ 1 −
(

1
k′u

)γ
. The other bounds follow similarly. Taking a union bound over all i’s

establishes the result. �
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Proof of Lemma 3.5: We bound

P[Ec2] = P[Ec2 ∩ E1] + P[Ec2 ∩ Ec1] ≤ P[Ec2 ∩ E1] + P[Ec1] ≤ P[Ec2 ∩ E1] + 16L
(

1
k′u

)γ
.

By construction, under E1 we have S′ab,i ≤ Sab,i ≤ S′′ab,i so that

P[Ec2 ∩ E1] ≤ P[∃i, S′ab,i ≤ `uD2
t − 3Mtδu]

+P[∃i, S′′ab,i ≥ `uD2
t + 3Mtδu]

≤ P
[
∃i, S′ab,i ≤ (`u − 2δu + 1)D2

t − c
√
k′u log k′u

]
+P
[
∃i, S′′ab,i ≥ (`u + 2δu + 1)D2

t + c
√
k′u log k′u

]
≤ 2L

(
1
k′u

)γ
,

by Lemma 3.3, where we also used the fact that D2
t ≤Mt. �

Proof of Lemma 3.6: Observe that when Ku ≥ k′u the ancestral blocks σu,i are well defined. Assuming
that k0 > k∗0 , the interior blocks σ′u,i are also well defined and disjoint. Hence, for a fixed I under E , for all
i ≤ L − 1, both ∆a,i and ∆b,i depend on the subsequence of σu ranging from position (i − 1)`u − δu + 1
to position i`u + δu − 1. In this case, for j ∈ {1, . . . , L/2 − 1}, different ∆a,2j+1∆b,2j+1s are functions
of different subsequences of σu. Observe that, since the root sequence is i.i.d. uniform and the insertions
above u are also i.i.d. uniform, the state of every site in σu is uniform and independent from the other sites.
It follows from the above observations that {∆a,2j+1∆b,2j+1}L/2−1

j=1 are mutually independent. �

Proof of Lemma 3.7: Let ∆S
a,i be the contribution to ∆a,i from those common sites between a and b that

are jointly surviving from u. Let ∆NS
a,i = ∆a,i −∆S

a,i. And similarly for b. Then

E[∆a,i∆b,i | I, E ] = E[(∆S
a,i + ∆NS

a,i )(∆
S
b,i + ∆NS

b,i ) | I, E ]

= E[∆S
a,i∆

S
b,i | I, E ],

since the contribution from ∆NS
a,i and ∆NS

b,i is independent and averages to 0. Write ∆S
a,i as a sum over the

jointly surviving sites, that is,

∆S
a,i =

Sab,i∑
j=1

(
z

(j)
a,i −

1
2

)
,

where z(j)
a,i is 1 if the corresponding site of a is 0. Note that the terms in parentheses have zero expectation

under I and E . Then,

E[∆S
a,i∆

S
b,i | I, E ] =

Sab,i∑
j=1

E
[(
z

(j)
a,i −

1
2

)(
z

(j)
b,i −

1
2

)
| I, E

]
,

by independence of the sites. We compute the expectation above. We have

E
[(
z
(j)
a,i −

1
2

)(
z
(j)
b,i −

1
2

)
| I, E

]
= E

[(
z
(j)
a,iz

(j)
b,i −

1
2
z
(j)
a,i −

1
2
z
(j)
b,i +

1
4

)
| I, E

]
= E

[
z
(j)
a,iz

(j)
b,i | I, E

]
− 1

4

=
1
2
· 1 + e−4ηt

2
− 1

4

=
1
4
e−4ηt.
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Therefore
E[∆S

a,i∆
S
b,i | I, E ] =

1
4
e−4ηtSab,i.

The result then follows from E2. �

Proof of Lemma 3.8: By Cauchy-Schwarz, we have

E[∆2
a,i∆

2
b,i | I, E ] ≤ (E[∆4

a,i | I, E ]E[∆4
b,i | I, E ])1/2

=
(

1
16

(3`2 − 2`) · 1
16

(3`2 − 2`)
)1/2

≤ 3
16
`2,

where we used the fact that the length of the sequences σa,i and σb,i is deterministically `, and the number
of zeros in σa,i and σb,i follows a Binomial distribution with ` trials and probability 1/2. �

Proof of Lemma 3.9: From Lemma 3.6, the L/2 = bk0/`c/2 terms in D̃(a, b) are mutually independent.
The proof then follows from Lemmas 3.7 and 3.8, and the definition of `u. �

Proof of Lemma 3.10: We use Chebyshev’s inequality. We first condition on I, E . Recalling that ` = dkζ0e,
note that

P∗u
[

4
`
D̃(a, b) > e−(4η+µ+λ)t +

1
kα0
| I, E

]
≤ P∗u

[
D̃(a, b) >

`

4
e−(4η+µ+λ)t +

`

4
1
kα0
| I, E

]
≤ P∗u

[
D̃(a, b) > E

[
D̃(a, b) | I, E

]
−O

(√
k0 log k0

)
+
`

4
1
kα0
| I, E

]

≤
3
8

1

bk1−ζ
0 c

`2(
`
4

1
kα
0
−O

(√
k0 log k0

))2

= O

(
1

k1−ζ−2α
0

)
.

The other direction is similar. Taking expectation over I, we have

P∗u
[∣∣∣∣4` D̃(a, b)− e−(4η+µ+λ)t

∣∣∣∣ > 1
kα0
| E
]
≤ O

(
1

kβ0

)
.

Choose γ > 0 in Lemmas 3.2 and 3.3 large enough so that

γ − (1− ζ) > β.

Then, from Lemmas 3.4 and 3.5, we have

P∗u
[∣∣∣∣4` D̃(a, b)− e−(4η+µ+λ)t

∣∣∣∣ > 1
kα0

]
≤ P∗u

[∣∣∣∣4` D̃(a, b)− e−(4η+µ+λ)t

∣∣∣∣ > 1
kα0
| E
]

P∗u[E ] + P∗u[Ec]

≤ O
(

1

kβ0

)
.

�
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C Putting it All Together

Large-scale asymptotics. We assume that all branch lengths te, e ∈ E, are bounded between two con-
stants f > 0 and g < +∞ independent of n. We also assume that for all e ∈ E, ηe is bounded between
two constants η > 0 and η̄ < +∞, which are also independent of n. Finally we assume that the indel rates
satisfy λe < µe ≤ µ̄ = O(1/ log n), for all e ∈ E.

We are ready to prove our main result in the molecular clock case. We postpone the more general case
to the appendix. A last bit of notation: For a pair of leaves a, b ∈ [n], we denote by tab the time between a,
b and their most recent common ancestor. In the molecular clock case this time is well-defined, assuming
that all leaves are contemporaneous.
Proof of Theorem 2: We first give a bound on the diameter of the tree. Let h (resp. H) be the length of
the shortest (resp. longest) path between the root and a leaf in graph distance. Because the number of leaves
is n we must have 2h ≤ n and 2H ≥ n. Since all leaves are contemporaneous it must be that Hf ≤ hg.
Combining these constraints gives that the diameter Diam satisfies

2
f

g
log2 n ≤ 2h ≤ Diam ≤ 2H ≤ 2

g

f
log2 n.

Given our bound on the diameter of the tree, it follows that the time from the root r of the tree to any leaf is
at most 2g

2

f log2 n. Suppose that the length kr at the root of the tree satisfies kr > k∗r = k∗r(k0), where k∗r is
the minimum integer satisfying

k∗r ≥ e
2g2

f
·µ log2 n

(
k0 + c

√
k∗r log k∗r

)
= O(1) ·

(
k0 + c

√
k∗r log k∗r

)
,

with c taken to be the constant used in Lemma 3.2. Lemma 3.2 and the union bound imply then that with
probability at least 1−O(n) · (k∗r)−γ :

for all nodes u: Ku ≥ k′u.
Lemma C.1 (Concentration of Distance Estimate) For all α′ > 0, β′ > 0, there exists k0 = poly(n)
large enough so that if the sequence length at the root is kr > k∗r(k0), then

P
[
∀a, b ∈ [n],

∣∣∣∣4` D̃(a, b)− e−(4η+µ+λ)tab

∣∣∣∣ ≤ 1
nα′

]
= 1−O

(
1
nβ′

)
.

Proof: Follows from Lemma 3.10 and our observation above that if kr > k∗r(k0) then with probability at
least 1−O(n) · (k∗r)−γ , then Ku ≥ k′u, for all nodes u. �

Given our bound on the diameter of the tree, we can show that for all pairs of leaves a, b and small
ε > 0:

e−(4η+µ+λ)tab±ε = e−(4η+µ+λ)tab(1±O(ε)) ≥ 1
nα′′

(1±O(ε)).

Therefore, choosing α′ large enough in Lemma C.1, we get that all distances can be estimated within a small
ε simultaneously with probability going to 1.

Using the standard Buneman algorithm, we can recover the tree efficiently. See e.g. [SS03]. �

Constant-size case. The proof of Theorem 1 for the molecular clock case builds on the proof of Theorem 2
by treating n as a constant and letting the sequence length at the root of the tree go to infinity. The extension
of Theorem 1 to the general case builds on the generalization of Theorem 2.
Proof of Theorem 1:(Molecular clock case) We can restate Lemma C.1 in the following form, where the
failure probability is expressed more cleanly in terms of the sequence length at the root of the tree. The
proof of the lemma is essentially the same.
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Lemma C.2 (Concentration of Distance Estimate) For all α′ > 0, there exists k∗0 = poly(n) large
enough such that if the sequence length at the root is kr > k∗r(k

∗
0), then

P
[
∀a, b ∈ [n],

∣∣∣∣4` D̃(a, b)− e−(4η+µ+λ)tab

∣∣∣∣ ≤ 1
nα′

]
= 1−O(n · k−γr )−O(n2 · k−βr ).

Repeating the proof of Theorem 1 in the previous subsection, it follows that the algorithm fails to reconstruct
the phylogeny with probability O(n · k−γr ) + O(n2 · k−βr ). Letting kr → +∞ concludes the proof of
Theorem 1. �

D Extensions

GTR model. We briefly discuss how our results can be extended to GTR models. For background on GTR
models, see e.g. [Fel04]. Let Q be a reversible 4 × 4 rate matrix with stationary distribution π. Our new
sequence evolution process is identical to the one described in Definition 1.1 except that the substitution
process is a continuous-time Markov process with rate matrix ηeQ. The rate matrix Q has 4 nonnegative
eignevalues. For convenience, we assume that the largest negative eigenvalue is −1. We denote by w the
corresponding eigenvector which we assume is normalized as follows∑

s∈{A,G,C,T}

πsw
2
s = 1.

We now perform the following transformation of the state space. For a node u, let σu = (σ1
u, . . . , σ

Ku
u )

be the transormed sequence at u where σiu = wA (resp. wG, wC, wT) if the state at site i is A (resp. G, C, T).
Note that under stationarity, the expectation of the state at site i is 0 by orthogonality of π and w. Then, our
distance estimator is

D̂(a, b) =

(
Ka∑
i=1

σia

) Kb∑
j=1

σjb

 .

In particular, in the CFN case, we have w = (+1,−1) and we obtain the same estimate as before up to a
constant. We now analyze the expectation of this quantity. For u ∈ V , we let

∆u =
Ku∑
i=1

σiu.

Lemma D.1 The following holds:
E[∆a |σr] = e−(η+µ)t∆r. (8)

Remark D.2 Note that this formula is slightly different than that in Lemma 2.2 because of the normalization
implied by requiring Q to have second eigenvalue −1.

Proof: The sites created after r contribute 0 in expectation. Of course, so do the deleted sites. The fraction
of sites that survive is e−µt. Suppose site i survives, then note that

E[σia |σir = ws, i survives] = (eηtQ)ss′ws′ = e−ηtws.

Summing over all sites of r we get
E[∆a |σr] = e−(η+µ)t∆r,

as claimed. �
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Consider now a “fork” tree, that is, a root r from which emanates a single edge eu = (r, u) which in
turn branches into two edges ea = (u, a) and eb = (u, b). For x = a, b, u, we denote the parameters of edge
ex by tx, λx, µx, ηx. Our goal is to compute E[D̂(a, b)] assuming that the sequence length at the root is k.
The proof is similar to Lemma 2.3.

Lemma D.3 The following holds:

E
[
D̂(a, b)

]
= e−(ηa+µa)tae−(ηb+µb)tbe−(µu−λu)tuk.

Note that Remark D.2 also applies here.

Proof: We have

E
[
D̂(a, b)

]
= E [∆a∆b]

= E [E [∆a∆b |σu]]
= E [E [∆a |σu] E [∆b |σu]]
= e−ηatae−µatae−ηbtbe−µbtbE

[
∆2
u

]
= e−ηatae−µatae−ηbtbe−µbtbE

[
E
[
∆2
u |Ku

]]
= e−ηatae−µatae−ηbtbe−µbtbE [Var [∆u |Ku]]
= e−ηatae−µatae−ηbtbe−µbtbE

[
KuVar[σ1

u]]
]

= e−ηatae−µatae−ηbtbe−µbtbE
[
KuE[(σ1

u)2]
]

= e−ηatae−µatae−ηbtbe−µbtbe−(µu−λu)tuk,

by Lemma D.1. �

From the previous lemmas, it is easy to adapt the proofs above to the GTR case.

Nonclock case. Using Lemma D.3, we can get rid of the molecular clock assumption. Consider again the
fork tree, but assume that each edge is in fact a path. A simple adaptation of Lemma D.3 gives the following.

Lemma D.4 The following holds:

− ln

 E
[
D̂(a, b)

]
√

E[Ka]E[Kb]

 =
∑

e∈P(a,b)

(ηe + µe/2 + ηe/2)te.

Note that Remark D.2 also applies here.

Proof: Note that
− ln

(
k−1E[Ka]

)
=

∑
e∈P(r,a)

(µe − λe)te,

and similarly for b. A variant of Lemma D.3 gives

− ln
(
k−1E

[
D̂(a, b)

])
=

∑
e∈P(a,b)

(ηe + µe)te +
∑

e∈P(r,u)

(µe − λe)te.

The result follows by subtracting the previous expressions. �

The expression in Lemma D.4 provides the additive metric needed to extend our results to nonclock cases.
A simple adaptation of our estimation procedure can be used to estimate this metric. We will give the details
in the full version.
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