5,129 research outputs found

    Bulletin No. 346 - Irrigation Waters of Utah

    Get PDF
    Irrigation waters are never pure. All contain some dissolved salts. The amount may vary from a trace to concentrations so great that the water is unfit for use. The kind of salt in irrigation water may be even more important than the total amount. Borates in extremely low quantities, for example, may injure or kill crop plants. If the proportion of sodium in irrigation water is high, the soil may be gradually rendered unproductive. On the other hand, the salts may consist in part of essential plant nutrients or other helpful salts that aid in keeping soils productive

    Recent Progress in Parton Distributions and Implications for LHC Physics

    Full text link
    I outline some of the most recent developments on the global fit to parton distributions performed by the MRST collaboration.Comment: 6 pages, 7 figures. To appear in proceedings of XIII International Workshop on Deep Inelastic Scattering, April,27 - May,1, 2005, Madison, Wisconsin, US

    Commercial air transport hazard warning and avoidance system. Volume 2 - Requirements studies Final report

    Get PDF
    Operational requirements and cost effectiveness of commercial air transport hazard warning and avoidance syste

    Periodic Solutions of the Einstein Equations for Binary Systems

    Full text link
    This revision includes clarified exposition and simplified analysis. Solutions of the Einstein equations which are periodic and have standing gravitational waves are valuable approximations to more physically realistic solutions with outgoing waves. A variational principle is found which has the power to provide an accurate estimate of the relationship between the mass and angular momentum of the system, the masses and angular momenta of the components, the rotational frequency of the frame of reference in which the system is periodic, the frequency of the periodicity of the system, and the amplitude and phase of each multipole component of gravitational radiation. Examination of the boundary terms of the variational principle leads to definitions of the effective mass and effective angular momentum of a periodic geometry which capture the concepts of mass and angular momentum of the source alone with no contribution from the gravitational radiation. These effective quantities are surface integrals in the weak-field zone which are independent of the surface over which they are evaluated, through second order in the deviations of the metric from flat space.Comment: 18 pages, RevTeX 3.0, UF-RAP-93-1

    On the measurement of a weak classical force coupled to a quantum-mechanical oscillator. I. Issues of principle

    Get PDF
    The monitoring of a quantum-mechanical harmonic oscillator on which a classical force acts is important in a variety of high-precision experiments, such as the attempt to detect gravitational radiation. This paper reviews the standard techniques for monitoring the oscillator, and introduces a new technique which, in principle, can determine the details of the force with arbitrary accuracy, despite the quantum properties of the oscillator. The standard method for monitoring the oscillator is the "amplitude-and-phase" method (position or momentum transducer with output fed through a narrow-band amplifier). The accuracy obtainable by this method is limited by the uncertainty principle ("standard quantum limit"). To do better requires a measurement of the type which Braginsky has called "quantum nondemolition." A well known quantum nondemolition technique is "quantum counting," which can detect an arbitrarily weak classical force, but which cannot provide good accuracy in determining its precise time dependence. This paper considers extensively a new type of quantum nondemolition measurement—a "back-action-evading" measurement of the real part X_1 (or the imaginary part X_2) of the oscillator's complex amplitude. In principle X_1 can be measured "arbitrarily quickly and arbitrarily accurately," and a sequence of such measurements can lead to an arbitrarily accurate monitoring of the classical force. The authors describe explicit Gedanken experiments which demonstrate that X_1 can be measured arbitrarily quickly and arbitrarily accurately. In these experiments the measuring apparatus must be coupled to both the position (position transducer) and the momentum (momentum transducer) of the oscillator, and both couplings must be modulated sinusoidally. For a given measurement time the strength of the coupling determines the accuracy of the measurement; for arbitrarily strong coupling the measurement can be arbitrarily accurate. The "momentum transducer" is constructed by combining a "velocity transducer" with a "negative capacitor" or "negative spring." The modulated couplings are provided by an external, classical generator, which can be realized as a harmonic oscillator excited in an arbitrarily energetic, coherent state. One can avoid the use of two transducers by making "stroboscopic measurements" of X_1, in which one measures position (or momentum) at half-cycle intervals. Alternatively, one can make "continuous single-transducer" measurements of X_1 by modulating appropriately the output of a single transducer (position or momentum), and then filtering the output to pick out the information about X_1 and reject information about X_2. Continuous single-transducer measurements are useful in the case of weak coupling. In this case long measurement times are required to achieve good accuracy, and continuous single-transducer measurements are almost as good as perfectly coupled two-transducer measurements. Finally, the authors develop a theory of quantum nondemolition measurement for arbitrary systems. This paper (Paper I) concentrates on issues of principle; a sequel (Paper II) will consider issues of practice
    • …
    corecore