research

Periodic Solutions of the Einstein Equations for Binary Systems

Abstract

This revision includes clarified exposition and simplified analysis. Solutions of the Einstein equations which are periodic and have standing gravitational waves are valuable approximations to more physically realistic solutions with outgoing waves. A variational principle is found which has the power to provide an accurate estimate of the relationship between the mass and angular momentum of the system, the masses and angular momenta of the components, the rotational frequency of the frame of reference in which the system is periodic, the frequency of the periodicity of the system, and the amplitude and phase of each multipole component of gravitational radiation. Examination of the boundary terms of the variational principle leads to definitions of the effective mass and effective angular momentum of a periodic geometry which capture the concepts of mass and angular momentum of the source alone with no contribution from the gravitational radiation. These effective quantities are surface integrals in the weak-field zone which are independent of the surface over which they are evaluated, through second order in the deviations of the metric from flat space.Comment: 18 pages, RevTeX 3.0, UF-RAP-93-1

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 01/04/2019