11 research outputs found

    Glycation and diabetes: The RAGE connection

    Get PDF
    The hyperglycaemic state seen in diabetes mellitus is associated with the development of diabetes-specific microvascular complications and accelerated macrovascular disease. Evidence implicates the formation and subsequent effects of advanced glycation endproducts (AGEs) as a contributing cause. AGEs exert their effects through interaction with the Receptor for AGE (RAGE) which upregulates expression of the receptor and induces a cascade of cytotoxic pathways. Accumulation of AGE/RAGE can be seen at sites of vascular disease in both animal models of diabetes and human diabetic subjects. Blockade of RAGE in animal models of diabetes suppresses development of dysfunction in the vasculature and atherosclerosis development. Genetic studies of RAGE reveal that a number of allelic variants of RAGE occur in key protein and regulatory domains. A Gly to Ser change at position 82 and two 5¢¢ flanking polymorphisms at position –374 and –429 lead to altered function and expression of RAGE which may impact on diabetic vascular disease development. Therapy aimed to block RAGE upregulation may prove to be useful in treating individuals with diabetic vascular disease

    Posttranslationally Modified Proteins as Mediators of Sustained Intestinal Inflammation

    No full text
    Oxidative and carbonyl stress leads to generation of N(ε)-carboxymethyllysine-modified proteins (CML-mps), which are known to bind the receptor for advanced glycation end products (RAGE) and induce nuclear factor (NF)-κB-dependent proinflammatory gene expression. To determine the impact of CML-mps in vivo, RAGE-dependent sustained NF-κB activation was studied in resection gut specimens from patients with inflammatory bowel disease. Inflamed gut biopsy tissue demonstrated a significant up-regulation of RAGE and increased NF-κB activation. Protein extracts from the inflamed zones, but not from noninflamed resection borders, caused perpetuated NF-κB activation in cultured endothelial cells, which was mediated by CML-mps including CML-modified S100 proteins. The resulting NF-κB activation, lasting 5 days, was primarily inhibited by either depletion of CML-mps or by the addition of sRAGE, p44/42 and p38 MAPKinase-specific inhibitors. Consistently, CML-mps isolated from inflamed gut areas and rectally applied into mice caused NF-κB activation, increased proinflammatory gene expression, and histologically detectable inflammation in wild-type mice, but not in RAGE(−/−) mice. A comparable up-regulation of NF-κB and inflammation on rectal application of CML-mps was observed in IL-10(−/−) mice. Thus, CML-mps generated in inflammatory lesions have the capacity to elicit a RAGE-dependent intestinal inflammatory response
    corecore