9 research outputs found

    Benefits of design assist techniques on performances and reliability of a RRAM macro

    No full text
    International audienceThis paper presents different design assist techniques and demonstrates their impact on enhancing the intrinsic RRAM performance. We show that the read-beforewrite, current-limitation and write-termination techniques reduce by-47%,-56% and-13% the power consumption during the writing process, respectively. Combined with write verification and error correction code, the overall improvements are 87% in energy saving and-55% on access time. Based on representative RRAM macro (130nm CMOS), statistic (128kb) and endurance (1M cycles) characterizations, this works contributes to accelerate RRAM industrial adoption by highlighting the design-technology co-optimization contribution

    SpiNNaker: design and implementation of a GALS multicore system-on-chip

    No full text
    The design and implementation of Globally Asynchronous Locally Synchronous Systems-on-Chip is a challenging activity. The large size and complexity of the systems require the use of Computer-Aided Design (CAD) tools but, unfortunately, most tools do not work adequately with asynchronous circuits. This paper describes the successful design and implementation of SpiNNaker, a GALS multi-core system-on-chip. The processes was completed using commercial CAD tools from synthesis to layout. A hierarchical methodology was devised to deal with the asynchronous sections of the system, encapsulating and validating timing assumptions at each level. The crossbar topology combined with a pipelined asynchronous fabric implementation allows the on-chip network to meet the stringent requirements of the system. The implementation methodology constrains the design in a way which allows the tools to complete their tasks successfully. A first test chip, with reduced resources and complexity was taped-out using the proposed methodology. Test chips were received in December 2009 and were fully functional. The methodology had to be modified to cope with the increased complexity of the SpiNNaker SoC. SpiNNaker chips were delivered in May 2011 and were also fully operational, and the interconnect requirements were met

    Material and integration challenges for large scale Si quantum computing

    No full text
    International audienceSi spin qubits are very promising to enable large scale quantum computing as they are fast, of high quality and small. However, they are still lagging behind in terms of number of qubits. Indeed there are material and integration challenges to be tackled before fully expressing their potential

    Association between preoperative peripheral blood mononuclear cell gene expression profiles, early postoperative organ function recovery potential and long-term survival in advanced heart failure patients undergoing mechanical circulatory support

    No full text
    Multiorgan dysfunction syndrome contributes to adverse outcomes in advanced heart failure (AdHF) patients after mechanical circulatory support (MCS) implantation and is associated with aberrant leukocyte activity. We tested the hypothesis that preoperative peripheral blood mononuclear cell (PBMC) gene expression profiles (GEP) can predict early postoperative improvement or non-improvement in patients undergoing MCS implantation. We believe this information may be useful in developing prognostic biomarkers.We conducted a study with 29 patients undergoing MCS-surgery in a tertiary academic medical center from 2012 to 2014. PBMC samples were collected one day before surgery (day -1). Clinical data was collected on day -1 and day 8 postoperatively. Patients were classified by Sequential Organ Failure Assessment score and Model of End-stage Liver Disease Except INR score (measured eight days after surgery): Group I = improving (both scores improved from day -1 to day 8, n = 17) and Group II = not improving (either one or both scores did not improve from day -1 to day 8, n = 12). RNA-sequencing was performed on purified mRNA and analyzed using Next Generation Sequencing Strand. Differentially expressed genes (DEGs) were identified by Mann-Whitney test with Benjamini-Hochberg correction. Preoperative DEGs were used to construct a support vector machine algorithm to predict Group I vs. Group II membership.Out of 28 MCS-surgery patients alive 8 days postoperatively, one-year survival was 88% in Group I and 27% in Group II. We identified 28 preoperative DEGs between Group I and II, with an average 93% prediction accuracy. Out of 105 DEGs identified preoperatively between year 1 survivors and non-survivors, 12 genes overlapped with the 28 predictive genes.In AdHF patients following MCS implantation, preoperative PBMC-GEP predicts early changes in organ function scores and correlates with long-term outcomes. Therefore, gene expression lends itself to outcome prediction and warrants further studies in larger longitudinal cohorts

    Platinum-Group Metals, Alloys and Compounds in Catalysis

    No full text
    corecore