183 research outputs found
An ab-initio converse NMR approach for pseudopotentials
We extend the recently developed converse NMR approach [T. Thonhauser, D.
Ceresoli, A. Mostofi, N. Marzari, R. Resta, and D. Vanderbilt, J. Chem. Phys.
\textbf{131}, 101101 (2009)] such that it can be used in conjunction with
norm-conserving, non-local pseudopotentials. This extension permits the
efficient ab-initio calculation of NMR chemical shifts for elements other than
hydrogen within the convenience of a plane-wave pseudopotential approach. We
have tested our approach on several finite and periodic systems, finding very
good agreement with established methods and experimental results.Comment: 11 pages, 2 figures, 4 tables; references expande
Wannier-based calculation of the orbital magnetization in crystals
We present a first-principles scheme that allows the orbital magnetization of
a magnetic crystal to be evaluated accurately and efficiently even in the
presence of complex Fermi surfaces. Starting from an initial
electronic-structure calculation with a coarse ab initio k-point mesh,
maximally localized Wannier functions are constructed and used to interpolate
the necessary k-space quantities on a fine mesh, in parallel to a
previously-developed formalism for the anomalous Hall conductivity [X.Wang, J.
Yates, I. Souza, and D. Vanderbilt, Phys. Rev. B 74, 195118 (2006)]. We
formulate our new approach in a manifestly gauge-invariant manner, expressing
the orbital magnetization in terms of traces over matrices in Wannier space.
Since only a few (e.g., of the order of 20) Wannier functions are typically
needed to describe the occupied and partially occupied bands, these Wannier
matrices are small, which makes the interpolation itself very efficient. The
method has been used to calculate the orbital magnetization of bcc Fe, hcp Co,
and fcc Ni. Unlike an approximate calculation based on integrating orbital
currents inside atomic spheres, our results nicely reproduce the experimentally
measured ordering of the orbital magnetization in these three materials.Comment: 13 pages, 3 figures, 4 table
Fcc breathing instability in BaBiO_3 from first principles
We present first-principles density-functional calculations using the local
density approximation to investigate the structural instability of cubic
perovskite BaBiO_3. This material might exhibit charge disproportionation and
some evidence thereof has been linked to the appearance of an additional,
fourth peak in the experimental IR spectrum. However, our results suggest that
the origin of this additional peak can be understood within the picture of a
simple structural instability. While the true instability consists of an
oxygen-octahedra breathing distortion and a small octahedra rotation, we find
that the breathing alone in a fcc-type cell doubling is sufficient to explain
the fourth peak in the IR spectrum. Our results show that the oscillator
strength of this particular mode is of the same order of magnitude as the other
three modes, in agreement with experiment.Comment: submitted to PRB, completely revised version after referee repor
Theory of Orbital Magnetization in Solids
In this review article, we survey the relatively new theory of orbital
magnetization in solids-often referred to as the "modern theory of orbital
magnetization"-and its applications. Surprisingly, while the calculation of the
orbital magnetization in finite systems such as atoms and molecules is straight
forward, in extended systems or solids it has long eluded calculations owing to
the fact that the position operator is ill-defined in such a context.
Approaches that overcome this problem were first developed in 2005 and in the
first part of this review we present the main ideas reaching from a Wannier
function approach to semi-classical and finite-temperature formalisms. In the
second part, we describe practical aspects of calculating the orbital
magnetization, such as taking k-space derivatives, a formalism for
pseudopotentials, a single k-point derivation, a Wannier interpolation scheme,
and DFT specific aspects. We then show results of recent calculations on Fe,
Co, and Ni. In the last part of this review, we focus on direct applications of
the orbital magnetization. In particular, we will review how properties such as
the nuclear magnetic resonance shielding tensor and the electron paramagnetic
resonance g-tensor can elegantly be calculated in terms of a derivative of the
orbital magnetization
van der Waals density functionals built upon the electron-gas tradition: Facing the challenge of competing interactions
The theoretical description of sparse matter attracts much interest, in
particular for those ground-state properties that can be described by density
functional theory (DFT). One proposed approach, the van der Waals density
functional (vdW-DF) method, rests on strong physical foundations and offers
simple yet accurate and robust functionals. A very recent functional within
this method called vdW-DF-cx [K. Berland and P. Hyldgaard, Phys. Rev. B 89,
035412] stands out in its attempt to use an exchange energy derived from the
same plasmon-based theory from which the nonlocal correlation energy was
derived. Encouraged by its good performance for solids, layered materials, and
aromatic molecules, we apply it to several systems that are characterized by
competing interactions. These include the ferroelectric response in PbTiO,
the adsorption of small molecules within metal-organic frameworks (MOFs), the
graphite/diamond phase transition, and the adsorption of an aromatic-molecule
on the Ag(111) surface. Our results indicate that vdW-DF-cx is overall well
suited to tackle these challenging systems. In addition to being a competitive
density functional for sparse matter, the vdW-DF-cx construction presents a
more robust general purpose functional that could be applied to a range of
materials problems with a variety of competing interactions
Bloch bundles, Marzari-Vanderbilt functional and maximally localized Wannier functions
We consider a periodic Schroedinger operator and the composite Wannier
functions corresponding to a relevant family of its Bloch bands, separated by a
gap from the rest of the spectrum. We study the associated localization
functional introduced by Marzari and Vanderbilt, and we prove some results
about the existence and exponential localization of its minimizers, in
dimension d < 4. The proof exploits ideas and methods from the theory of
harmonic maps between Riemannian manifolds.Comment: 37 pages, no figures. V2: the appendix has been completely rewritten.
V3: final version, to appear in Commun. Math. Physic
Conception of a Web Operation System for Processing Petroleum Related Drilling Data: A Focus on Pre-Salt Real-Time Automation and Optimization
Petroleum and Natural Gas still represent a considerable share in terms of energy consumption in the current global matrix, so that its exploration/exploitation is present in the market and driving activities in locations of specific complexities, as the ones along unconventional hydrocarbon resources from the Brazilian pre-salt. The daily cost of well drilling under harsh conditions can exceed US $1 million a day, turning any type of downtime or necessary maintenance during the activities to be very costly, moment in which processes optimization starts to be a key factor in costs reduction. Thus, new technologies and methods in terms of automating and optimizing the processes may be of great advantages, having its impact in total related project costs. In this context, the goal of this research is to allow a computation tool supporting achieving a more efficient drilling process, by means of drilling mechanics parameters choosiness aiming rate of penetration (ROP) maximization and mechanic specific energy (MSE) minimization. Conceptually, driven by the pre-operational drilling test curve trends, the proposed system allows it to be performed with less human influences and being updateable automatically, allowing more precision and time reduction by selecting optimum parameters. A Web Operating System (Web OS) was designed and implemented, running in online servers, granting accessibility to it with any device that has a browser and internet connection. It allows processing the drilling parameters supplied and feed into it, issuing outcomes with optimum values in a faster and precise way, allowing reducing operating time
Elastic and vibrational properties of alpha and beta-PbO
The structure, electronic and dynamic properties of the two layered alpha
(litharge) and beta (massicot) phases of PbO have been studied by density
functional methods. The role of London dispersion interactions as leading
component of the total interaction energy between layers has been addressed by
using the Grimme's approach, in which new parameters for Pb and O atoms have
been developed. Both gradient corrected and hybrid functionals have been
adopted using Gaussian-type basis sets of polarized triple zeta quality for O
atoms and small core pseudo-potential for the Pb atoms. Basis set superposition
error (BSSE) has been accounted for by the Boys-Bernardi correction to compute
the interlayer separation. Cross check with calculations adopting plane waves
that are BSSE free have also been performed for both structures and vibrational
frequencies. With the new set of proposed Grimme's type parameters structures
and dynamical parameters for both PbO phases are in good agreement with
experimental data.Comment: 8 pages, 5 figure
- …