2,209 research outputs found

    Positive and negative affect and oral health-related quality of life

    Get PDF
    BACKGROUND: The aims of the study were to assess the impact of both positive (PA) and negative affect (NA) on self-reported oral health-related quality of life and to determine the effect of including affectivity on the relationship between oral health-related quality of life and a set of explanatory variables consisting of oral health status, socio-economic status and dental visiting pattern. METHODS: A random sample of 45–54 year-olds from metropolitan Adelaide, South Australia was surveyed by mailed self-complete questionnaire during 2004–05 with up to four follow-up mailings of the questionnaire to non-respondents (n = 986 responded, response rate = 44.4%). Oral health-related quality of life was measured using OHIP-14 and affectivity using the Bradburn scale. Using OHIP-14 and subscales as the dependent variables, regression models were constructed first using oral health status, socio-economic characteristics and dental visit pattern and then adding PA and NA as independent variables, with nested models tested for change in R-squared values. RESULTS: PA and NA exhibited a negative correlation of -0.49 (P < 0.01). NA accounted for a larger percentage of variance in OHIP-14 scores (3.0% to 7.3%) than PA (1.4% to 4.6%). In models that included both PA and NA, PA accounted for 0.2% to 1.1% of variance in OHIP-14 scores compared to 1.8% to 3.9% for NA. CONCLUSION: PA and NA both accounted for additional variance in quality of life scores, but did not substantially diminish the effect of established explanatory variables such as oral health status, socio-economic status and dental visit patterns

    Optical and Radio Polarimetry of the M87 Jet at 0.2" Resolution

    Full text link
    We discuss optical (HST/WFPC2 F555W) and radio (15 GHz VLA) polarimetry observations of the M87 jet taken during 1994-1995. Many knot regions are very highly polarized (4050\sim 40-50%, approaching the theoretical maximum for optically thin synchrotron radiation), suggesting highly ordered magnetic fields. High degrees of polarization are also observed in interknot regions. While the optical and radio polarization maps share many similarities, we observe significant differences between the radio and optical polarized structures, particularly for bright knots in the inner jet, giving us important insight into the jet's radial structure. Unlike in the radio, the optical magnetic field position angle becomes perpendicular to the jet at the upstream ends of knots HST-1, D, E and F. Moreover, the optical polarization decreases markedly at the position of the flux maxima in these knots. In contrast, the magnetic field position angle observed in the radio remains parallel to the jet in most of these regions, and the decreases in radio polarization are smaller. More minor differences are seen in other jet regions. Many of the differences between optical and radio polarimetry results can be explained in terms of a model whereby shocks occur in the jet interior, where higher-energy electrons are concentrated and dominate both polarized and unpolarized emissions in the optical, while the radio maps show strong contributions from lower-energy electrons in regions with {\bf B} parallel, near the jet surface.Comment: 28 pages, 7 figures; accepted for publication in AJ (May 1999

    Do genetic predictors of pain sensitivity associate with persistent widespread pain?

    Get PDF
    Genetic risk factors for pain sensitivity may also play a role in susceptibility to chronic pain disorders, in which subjects have low pain thresholds. The aim of this study was to determine if proposed functional single nucleotide polymorphisms (SNPs) in the GTP cyclohydrolase (GCH1) and μ opioid receptor (OPRM1) genes previously associated with pain sensitivity affect susceptibility to chronic widespread pain (CWP). Pain data was collected using body manikins via questionnaire at three time-points over a four year period from subjects aged 25-65 in the North-West of England as part of a population based cohort study, EPIFUND. CWP was defined at each time point using standard criteria. Three SNPs forming a proposed "pain-protective" haplotype in GCH1 (rs10483639, rs3783641 and rs8007267) and two SNPs in OPRM1 (rs1777971 (A118G) and rs563649) were genotyped in cases with persistent CWP (CWP present at ≥2 time-points) and controls who were pain-free at all time-points. The expectation-maximisation algorithm was used to estimate haplotype frequencies. The frequency of the "pain-protective" (CAT - C allele of rs10483639, A allele of rs3783641 and T allele of rs8007267) haplotype was compared to the frequency of the other haplotypes between cases and controls using the χ2 test. Allele frequencies and carriage of the minor allele was compared between cases and controls using χ2 tests for the OPRM1 SNPs. The frequency of the proposed GCH1 "pain-protective" haplotype (CAT) did not significantly differ between cases and controls and no significant associations were observed between the OPRM1 SNPs and CWP. In conclusion, there was no evidence of association between proposed functional SNPs, previously reported to influence pain sensitivity, in GCH1 and OPRM1 with CWP. Further evidence of null association in large independent cohorts is required to truly exclude these SNPs as genetic risk factors for CWP

    Fgf receptor 3 activation promotes selective growth and expansion of occipitotemporal cortex

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Fibroblast growth factors (Fgfs) are important regulators of cerebral cortex development. Fgf2, Fgf8 and Fgf17 promote growth and specification of rostromedial (frontoparietal) cortical areas. Recently, the function of Fgf15 in antagonizing Fgf8 in the rostral signaling center was also reported. However, regulation of caudal area formation by Fgf signaling remains unknown.</p> <p>Results</p> <p>In mutant mice with constitutive activation of Fgf receptor 3 (Fgfr3) in the forebrain, surface area of the caudolateral cortex was markedly expanded at early postnatal stage, while rostromedial surface area remained normal. Cortical thickness was also increased in caudal regions. The expression domain and levels of Fgf8, as well as overall patterning, were unchanged. In contrast, the changes in caudolateral surface area were associated with accelerated cell cycle in early stages of neurogenesis without an alteration of cell cycle exit. Moreover, a marked overproduction of intermediate neuronal progenitors was observed in later stages, indicating prolongation of neurogenesis.</p> <p>Conclusion</p> <p>Activation of Fgfr3 selectively promotes growth of caudolateral (occipitotemporal) cortex. These observations support the 'radial unit' and 'radial amplification' hypotheses and may explain premature sulcation of the occipitotemporal cortex in thanatophoric dysplasia, a human <it>FGFR3 </it>disorder. Together with previous work, this study suggests that formation of rostral and caudal areas are differentially regulated by Fgf signaling in the cerebral cortex.</p

    phot1 inhibition of ABCB19 primes lateral auxin fluxes in the shoot apex required for phototropism

    Get PDF
    It is well accepted that lateral redistribution of the phytohormone auxin underlies the bending of plant organs towards light. In monocots, photoreception occurs at the shoot tip above the region of differential growth. Despite more than a century of research, it is still unresolved how light regulates auxin distribution and where this occurs in dicots. Here, we establish a system in Arabidopsis thaliana to study hypocotyl phototropism in the absence of developmental events associated with seedling photomorphogenesis. We show that auxin redistribution to the epidermal sites of action occurs at and above the hypocotyl apex, not at the elongation zone. Within this region, we identify the auxin efflux transporter ATP-BINDING CASSETTE B19 (ABCB19) as a substrate target for the photoreceptor kinase PHOTOTROPIN 1 (phot1). Heterologous expression and physiological analyses indicate that phosphorylation of ABCB19 by phot1 inhibits its efflux activity, thereby increasing auxin levels in and above the hypocotyl apex to halt vertical growth and prime lateral fluxes that are subsequently channeled to the elongation zone by PIN-FORMED 3 (PIN3). Together, these results provide new insights into the roles of ABCB19 and PIN3 in establishing phototropic curvatures and demonstrate that the proximity of light perception and differential phototropic growth is conserved in angiosperm

    Shigella sonnei genome sequencing and phylogenetic analysis indicate recent global dissemination from Europe

    Get PDF
    Shigella are human-adapted Escherichia coli that have gained the ability to invade the human gut mucosa and cause dysentery1,2, spreading efficiently via low-dose fecal-oral transmission3,4. Historically, S. sonnei has been predominantly responsible for dysentery in developed countries, but is now emerging as a problem in the developing world, apparently replacing the more diverse S. flexneri in areas undergoing economic development and improvements in water quality4-6. Classical approaches have shown S. sonnei is genetically conserved and clonal7. We report here whole-genome sequencing of 132 globally-distributed isolates. Our phylogenetic analysis shows that the current S. sonnei population descends from a common ancestor that existed less than 500 years ago and has diversified into several distinct lineages with unique characteristics. Our analysis suggests the majority of this diversification occurred in Europe, followed by more recent establishment of local pathogen populations in other continents predominantly due to the pandemic spread of a single, rapidly-evolving, multidrug resistant lineage
    corecore