6,386 research outputs found

    Network power flow analysis for a high penetration of distributed generation

    Get PDF
    Increasing numbers of very small generators are being connected to electricity distribution systems around the world. Examples include photovoltaics (PV) and gas-fired domestic-scale combined heat and power (micro-CHP) systems, with electrical outputs in the region of 1 to 2 kW. These generators are normally installed within consumers' premises and connected to the domestic electricity supply network (230 V single-phase in Europe, 120 V in North America). There is a growing need to understand and quantify the technical impact that high penetrations of such generators may have on the operation of distribution systems. This paper presents an approach to analyzing this impact together with results indicating that considerable penetrations of micro-generation can be accommodated in a typical distribution system

    The influence of thermal storage on microgeneration flexibility

    Get PDF
    In a future power system, the ability to manipulate generation and load will be a critical factor in providing a secure and stable supply of electrical energy to consumers. Using a simulation-based approach, this study assesses the ability of thermal storage to help deliver flexibility in the operation of domestic micro-generation technologies without sacrificing householder comfort and convenience. A typical UK detached dwelling is modelled along with its heating system, which features a retro-fitted air source heat pump (ASHP). The model is used to determine the maximum possible temporal shift for different capacities and configurations of thermal storage, taking into account the influence of climate, building fabric, control settings and occupancy. The limits of time shifting are dictated by the living space temperature and the hot water temperature delivered to the occupants. The storage mechanisms examined are: the basic thermal inertia of the building fabric; increasing the space heating set point temperatures to increase fabric storage and inserting a dedicated thermal buffer between the ASHP and the heat distribution system. The simulation results indicate that back-shifting of the ASHP start/stop times of between one and two hours are possible without causing serious discomfort or inconvenience to the occupants

    The influence of thermal storage on microgeneration flexibility

    Get PDF
    In a future power system, the ability to manipulate generation and load will be a critical factor in providing a secure and stable supply of electrical energy to consumers. Using a simulation-based approach, this study assesses the ability of thermal storage to help deliver flexibility in the operation of domestic micro-generation technologies without sacrificing householder comfort and convenience. A typical UK detached dwelling is modelled along with its heating system, which features a retro-fitted air source heat pump (ASHP). The model is used to determine the maximum possible temporal shift for different capacities and configurations of thermal storage, taking into account the influence of climate, building fabric, control settings and occupancy. The limits of time shifting are dictated by the living space temperature and the hot water temperature delivered to the occupants. The storage mechanisms examined are: the basic thermal inertia of the building fabric; increasing the space heating set point temperatures to increase fabric storage and inserting a dedicated thermal buffer between the ASHP and the heat distribution system. The simulation results indicate that back-shifting of the ASHP start/stop times of between one and two hours are possible without causing serious discomfort or inconvenience to the occupants

    Comparison of nonlinear dynamic inversion and inverse simulation

    Get PDF
    No abstract available

    Whose finger on the nuclear trigger

    Get PDF

    Quantification of Fluid Structure Interaction Dynamics in a Deformable Vocal Fold Model with Injected Materials

    Get PDF
    The influence of injections on the fluid structure interactions was evaluated on a deformable life sized, synthetic, self-oscillating model with idealized geometry of human vocal folds. Two models were designed to incorporate 10% and 20% bowing similar to that found in patients with vocal fold paralysis. The models were fabricated from a flexible silicone compound with Young’s modulus values similar to those found in human vocal folds. The models incorporated a two-layer design that simulated the layered vocal fold structure. The bowed models were paired with “healthy” models and injected with silicone material until the gap from the designed bowing was closed. The effects of the injections were compared by measuring flow rate, frequency, onset pressure (a measure of vocal effort), and maximum glottal gap. High-speed imaging of the superior surface was used to determine qualitative data on the oscillation pattern. Flow rate, onset pressure, and maximum glottal gap were all reduced after injections were placed for both bowing cases. Frequency increased for the 10% bowed case and remained unchanged for the 20% bowed case. Suggestions for future related studies are discussed

    Sensitivity-analysis method for inverse simulation application

    Get PDF
    An important criticism of traditional methods of inverse simulation that are based on the Newton–Raphson algorithm is that they suffer from numerical problems. In this paper these problems are discussed and a new method based on sensitivity-analysis theory is developed and evaluated. The Jacobian matrix may be calculated by solving a sensitivity equation and this has advantages over the approximation methods that are usually applied when the derivatives of output variables with respect to inputs cannot be found analytically. The methodology also overcomes problems of input-output redundancy that arise in the traditional approaches to inverse simulation. The sensitivity- analysis approach makes full use of information within the time interval over which key quantities are compared, such as the difference between calculated values and the given ideal maneuver after each integration step. Applications to nonlinear HS125 aircraft and Lynx helicopter models show that, for this sensitivity-analysis method, more stable and accurate results are obtained than from use of the traditional Newton–Raphson approach

    A Comparison of Inverse Simulation-Based Fault Detection in a Simple Robotic Rover with a Traditional Model-Based Method

    Get PDF
    Robotic rovers which are designed to work in extra-terrestrial environments present a unique challenge in terms of the reliability and availability of systems throughout the mission. Should some fault occur, with the nearest human potentially millions of kilometres away, detection and identification of the fault must be performed solely by the robot and its subsystems. Faults in the system sensors are relatively straightforward to detect, through the residuals produced by comparison of the system output with that of a simple model. However, faults in the input, that is, the actuators of the system, are harder to detect. A step change in the input signal, caused potentially by the loss of an actuator, can propagate through the system, resulting in complex residuals in multiple outputs. These residuals can be difficult to isolate or distinguish from residuals caused by environmental disturbances. While a more complex fault detection method or additional sensors could be used to solve these issues, an alternative is presented here. Using inverse simulation (InvSim), the inputs and outputs of the mathematical model of the rover system are reversed. Thus, for a desired trajectory, the corresponding actuator inputs are obtained. A step fault near the input then manifests itself as a step change in the residual between the system inputs and the input trajectory obtained through inverse simulation. This approach avoids the need for additional hardware on a mass- and power-critical system such as the rover. The InvSim fault detection method is applied to a simple four-wheeled rover in simulation. Additive system faults and an external disturbance force and are applied to the vehicle in turn, such that the dynamic response and sensor output of the rover are impacted. Basic model-based fault detection is then employed to provide output residuals which may be analysed to provide information on the fault/disturbance. InvSim-based fault detection is then employed, similarly providing \textit{input} residuals which provide further information on the fault/disturbance. The input residuals are shown to provide clearer information on the location and magnitude of an input fault than the output residuals. Additionally, they can allow faults to be more clearly discriminated from environmental disturbances

    Four-state domestic building occupancy model for energy demand simulations

    Get PDF
    AbstractStochastic building occupancy models are increasingly used to underpin building energy demand models, especially those providing high-resolution electricity demand profiles. This paper describes the development of an established two-state active-occupancy model into a four-state model in which the absent/present state and the active/inactive state are treated separately. This provides a distinction between sleeping and absence and so offers an improved basis for demand modelling, particularly high-resolution thermal modelling. The model uses a first-order Markov chain technique and the paper illustrates the value of this approach in duly representing the naturally occurring correlation of occupancy states in multiply occupied dwellings. The paper also describes how the model has been enhanced to avoid under-representation of dwellings with 24h occupancy. The model has been implemented in Excel VBA and made available to download for free. The model is constructed from and verified against UK time-use survey data but could readily be adapted to use similar data from elsewhere
    • 

    corecore