1,422 research outputs found

    Fatal anaphylactoid reaction following ioversol administration

    Get PDF
    We report a fatal intravenous ioversol administration in a 60-year old male patient. Although the introduction of new low-osmolar non-ionogenic contrast media with a more favourable efficacy-toxicity balance has diminished the side-effects significantly, everyone involved in radiodiagnostic procedures should be aware of the potential life-threatening effects. Especially patients with risk factors for side-effects should be monitored carefully

    Imaging in the time of NFD/NSF: do we have to change our routines concerning renal insufficiency?

    Get PDF
    To date there are potential chronology-based but not conclusive reasons to believe that at least some of the gadolinium complexes play a causative role in the pathophysiology of nephrogenic systemic fibrosis (NSF) or nephrogenic fibrosing dermopathy (NFD). Still, the exact pathogenesis and the risk for patients is unclear beside the obvious connection to moderate to severe renal insufficiency. So far, MR imaging with Gd-enhancement was regarded as the safest imaging modality in these patients—the recent development creates tremendous uncertainty in the MR-community. Nevertheless, one should remember that, despite the over 200 cases of NSF and about 100 with proven involvement of Gd3+, the vast majority of over 200 million patients exposed to gadolinium since the 1980s have tolerated these agents well. Importantly, NSF is a rare disease and does not appear to occur in patients without renal impairment. Many patients and researchers have undergone MR investigations with Gd exposure in the past. For those, it is essential to know about the safety of the agents at normal renal function. We can hope that pharmacoepidemiological and preclinical studies will allow us to better understand the pathophysiology and role of the various MR contrast agents in the near future

    MR and CT techniques

    Get PDF
    Magnetic resonance imaging (MRI) and computed tomography (CT) are routinely used in female pelvis imaging. MRI is primarily useful for locoregional characterization of benign and malignant diseases. CT is less accurate in locoregional evaluation, but remains useful in the follow-up of treated gynecological malignancies, as well as in the setting of emergency and in the guidance of biopsies. Although transabdominal and transvaginal ultrasonography (US) is not under the scope of this chapter, it remains the first-line imaging method for most gynecological conditions.info:eu-repo/semantics/publishedVersio

    Being young in a changing world: how temperature and salinity changes interactively modify the performance of larval stages of the barnacle Amphibalanus improvisus

    Get PDF
    The fate of key species, such as the barnacle Amphibalanus improvisus, in the course of global change is of particular interest since any change in their abundance and/or performance may entail community-wide effects. In the fluctuating Western Baltic, species typically experience a broad range of environmental conditions, which may preselect them to better cope with climate change. In this study, we examined the sensitivity of two crucial ontogenetic phases (naupliar, cypris) of the barnacle toward a range of temperature (12, 20, and 28°C) and salinity (5, 15, and 30 psu) combinations. Under all salinity treatments, nauplii developed faster at intermediate and high temperatures. Cyprid metamorphosis success, in contrast, was interactively impacted by temperature and salinity. Survival of nauplii decreased with increasing salinity under all temperature treatments. Highest settlement rates occurred at the intermediate temperature and salinity combination, i.e., 20°C and 15 psu. Settlement success of “naive” cyprids, i.e., when nauplii were raised in the absence of stress (20°C/15 psu), was less impacted by stressful temperature/salinity combinations than that of cyprids with a stress history. Here, settlement success was highest at 30 psu particularly at low and high temperatures. Surprisingly, larval survival was not highest under the conditions typical for the Kiel Fjord at the season of peak settlement (20°C/15 psu). The proportion of nauplii that ultimately transformed to attached juveniles was, however, highest under these “home” conditions. Overall, only particularly stressful combinations of temperature and salinity substantially reduced larval performance and development. Given more time for adaptation, the relatively smooth climate shifts predicted will probably not dramatically affect this species

    Bacteriophage Lysin Mediates the Binding of Streptococcus mitis to Human Platelets through Interaction with Fibrinogen

    Get PDF
    The binding of bacteria to human platelets is a likely central mechanism in the pathogenesis of infective endocarditis. We have previously found that platelet binding by Streptococcus mitis SF100 is mediated by surface components encoded by a lysogenic bacteriophage, SM1. We now demonstrate that SM1-encoded lysin contributes to platelet binding via its direct interaction with fibrinogen. Far Western blotting of platelets revealed that fibrinogen was the major membrane-associated protein bound by lysin. Analysis of lysin binding with purified fibrinogen in vitro confirmed that these proteins could bind directly, and that this interaction was both saturable and inhibitable. Lysin bound both the Aα and Bβ chains of fibrinogen, but not the γ subunit. Binding of lysin to the Bβ chain was further localized to a region within the fibrinogen D fragment. Disruption of the SF100 lysin gene resulted in an 83±3.1% reduction (mean ± SD) in binding to immobilized fibrinogen by this mutant strain (PS1006). Preincubation of this isogenic mutant with purified lysin restored fibrinogen binding to wild type levels. When tested in a co-infection model of endocarditis, loss of lysin expression resulted in a significant reduction in virulence, as measured by achievable bacterial densities (CFU/g) within vegetations, kidneys, and spleens. These results indicate that bacteriophage-encoded lysin is a multifunctional protein, representing a new class of fibrinogen-binding proteins. Lysin appears to be cell wall-associated through its interaction with choline. Once on the bacterial surface, lysin can bind fibrinogen directly, which appears to be an important interaction for the pathogenesis of endocarditis
    corecore