173 research outputs found

    Use of Data-Driven Approaches for Defect Classification in Stator Winding Insulation

    Get PDF
    Partial discharges (PD) in the high voltage insulation systems are both a symptom and cause of terminal and impending failures. The use of data-driven methods based on PD measurements will enable predictive strategies to replace traditional maintenance strategies. This paper employs machine learningbased classification models to identify and characterize PD signals originating from lab-made artificial defects in epoxy-mica material samples. Three different PD sources were studied: surface discharges in air, corona discharges, and discharges caused by internal cavities/delaminations. To generate high-quality datasets for the training, validation, and testing of classification models, Phase-Resolved PD (PRPD) data for each test object was obtained at room temperature under 50 Hz AC excitation at 10 % above the PD inception voltage (PDIV) of each sample. Relevant statistical and deterministic features were extracted for each observation and were labeled based on the defect type (supervised learning). Finally, the trained and validated ML models were used to identify PD sources in the service-aged stator winding insulation. Support vector machines (SVM), ensemble, and k-nearest neighbor (kNN) algorithms achieved significantly high accuracy (≥ 95 %) of defect identification.publishedVersio

    Superparamagnetic iron oxide polyacrylic acid coated {\gamma}-Fe2O3 nanoparticles does not affect kidney function but causes acute effect on the cardiovascular function in healthy mice

    Full text link
    This study describes the distribution of intravenously injected polyacrylic acid (PAA) coated {\gamma}-Fe2O3 NPs (10 mg kg-1) at the organ, cellular and subcellular levels in healthy BALB/cJ mice and in parallel addresses the effects of NP injection on kidney function, blood pressure and vascular contractility. Magnetic resonance imaging (MRI) and transmission electron microscopy (TEM) showed accumulation of NPs in the liver within 1h after intravenous infusion, accommodated by intracellular uptake in endothelial and Kupffer cells with subsequent intracellular uptake in renal cells, particularly the cytoplasm of the proximal tubule, in podocytes and mesangial cells. The renofunctional effects of NPs were evaluated by arterial acid-base status and measurements of glomerular filtration rate (GFR) after instrumentation with chronically indwelling catheters. Arterial pH was 7.46 and 7.41 in mice 0.5 h after injections of saline or NP, and did not change over the next 12h. In addition, the injections of NP did not affect arterial PCO2 or [HCO3-] either. Twenty-four and 96h after NP injections, the GFR averaged 11.0 and 13.0 ml min-1 g-1, respectively, values which were statistically comparable with controls (14.0 and 14.0 ml min-1 g-1). Mean arterial blood pressure (MAP) decreased 12-24h after NP injections (111 vs 123 min-1) associated with a decreased contractility of small mesenteric arteries revealed by myography to characterise endothelial function. In conclusion, our study demonstrates that accumulation of superparamagnetic iron oxide nanoparticles does not affect kidney function in healthy mice but temporarily decreases blood pressure.Comment: 21 pages, 12 figures, published in Toxicology and Applied Pharmacology 201

    The antihypertensive MTHFR gene polymorphism rs17367504-G is a possible novel protective locus for preeclampsia

    Get PDF
    Objective: Preeclampsia is a complex heterogeneous disease commonly defined by new-onset hypertension and proteinuria in pregnancy. Women experiencing preeclampsia have increased risk for cardiovascular diseases (CVD) later in life. Preeclampsia and CVD share risk factors and pathophysiologic mechanisms, including dysregulated inflammation and raised blood pressure. Despite commonalities, little is known about the contribution of shared genes (pleiotropy) to these diseases. This study aimed to investigate whether genetic risk factors for hypertension or inflammation are pleiotropic by also being associated with preeclampsia. Methods: We genotyped 122 single nucleotide polymorphisms (SNPs) in women with preeclampsia (n = 1006) and nonpreeclamptic controls (n = 816) from the Norwegian HUNT Study. SNPs were chosen on the basis of previously reported associations with either nongestational hypertension or inflammation in genome-wide association studies. The SNPs were tested for association with preeclampsia in a multiple logistic regression model. Results: The minor (G) allele of the intronic SNP rs17367504 in the gene methylenetetrahydrofolate reductase (MTHFR) was associated with a protective effect on preeclampsia (odds ratio 0.65, 95% confidence interval 0.53–0.80) in the Norwegian cohort. This association did not replicate in an Australian preeclampsia case–control cohort (P = 0.68, odds ratio 1.05, 95% confidence interval 0.83–1.32, minor allele frequency = 0.15). Conclusion: MTHFR is important for regulating transmethylation processes and is involved in regulation of folate metabolism. The G allele of rs17367504 has previously been shown to protect against nongestational hypertension. Our study suggests a novel association between this allele and reduced risk for preeclampsia. This is the first study associating the minor (G) allele of a SNP within the MTHFR gene with a protective effect on preeclampsia, and in doing so identifying a possible pleiotropic protective effect on preeclampsia and hypertension

    Organ and tissue level properties are more sensitive to age than osteocyte lacunar characteristics in rat cortical bone

    Full text link
    Modeling and remodeling induce significant changes of bone structure and mechanical properties with age. Therefore, it is important to gain knowledge of the processes taking place in bone over time. The rat is a widely used animal model, where much data has been accumulated on age-related changes of bone on the organ and tissue level, whereas features on the nano- and micrometer scale are much less explored. We investigated the age-related development of organ and tissue level bone properties such as bone volume, bone mineral density, and load to fracture and correlated these with osteocyte lacunar properties in rat cortical bone. Femora of 14 to 42-week-old female Wistar rats were investigated using multiple complementary techniques including X-ray micro-computed tomography and biomechanical testing. The body weight, femoral length, aBMD, load to fracture, tissue volume, bone volume, and tissue density were found to increase rapidly with age at 14-30 weeks. At the age of 30-42 weeks, the growth rate appeared to decrease. However, no accompanying changes were found in osteocyte lacunar properties such as lacunar volume, ellipsoidal radii, lacunar stretch, lacunar oblateness, or lacunar orientation with animal age. Hence, the evolution of organ and tissue level properties with age in rat cortical bone is not accompanied by related changes in osteocyte lacunar properties. This suggests that bone microstructure and bone matrix material properties and not the geometric properties of the osteocyte lacunar network are main determinants of the properties of the bone on larger length scales
    corecore