2,250 research outputs found
Gavestinel does not improve outcome after acute intracerebral hemorrhage: an analysis from the GAIN International and GAIN Americas studies
<p><b>Background and Purpose:</b> Glycine Antagonist in Neuroprotection (GAIN) International and GAIN Americas trials were prospectively designed, randomized, placebo-controlled trials of gavestinel, a glycine-site antagonist and putative neuroprotectant drug administered within 6 hours of suspected ischemic or hemorrhagic stroke. Both trials reported that gavestinel was ineffective in ischemic stroke. This analysis reports the results in those with primary intracerebral hemorrhage.</p>
<p><b>Methods:</b> The primary hypothesis was that gavestinel treatment did not alter outcome, measured at 3 months by the Barthel Index (BI), from acute intracerebral hemorrhage, based on pooled results from both trials. The BI scores were divided into 3 groups: 95 to 100 (independent), 60 to 90 (assisted independence), and 0 to 55 (dependent) or dead.</p>
<p><b>Results:</b> In total, 3450 patients were randomized in GAIN International (N=1804) and GAIN Americas (N=1646). Of these, 571 were ultimately identified to have spontaneous intracerebral hematoma on baseline head computerized tomography scan. The difference in distribution of trichotomized BI scores at 3 months between gavestinel and placebo was not statistically significant (P=0.09). Serious adverse events were reported at similar rates in the 2 treatment groups.</p>
<p><b>Conclusions:</b> These observations from the combined GAIN International and GAIN Americas trials suggest that gavestinel is not of substantial benefit or harm to patients with primary intracerebral hemorrhage. These findings are similar to results previously reported in patients with ischemic stroke.</p>
Influences of neutron star parameters on evolutions of different types of pulsar; evolutions of anomalous X-ray pulsars, soft gamma repeaters and dim isolated thermal neutron stars on the P-\.{P} diagram
Influences of the mass, moment of inertia, rotation, absence of stability in
the atmosphere and some other parameters of neutron stars on the evolution of
pulsars are examined. It is shown that the locations and evolutions of soft
gamma repeaters, anomalous X-ray pulsars and other types of pulsar on the
period versus period derivative diagram can be explained adopting values of
B G for these objects. This approach gives the possibility to explain
many properties of different types of pulsar.Comment: 18 pages, 1 figur
No Significant Evidence of Cognitive Biases for Emotional Stimuli in Children At-Risk of Developing Anxiety Disorders.
This paper explores whether the increased vulnerability of children of anxious parents to develop anxiety disorders may be partially explained by these children having increased cognitive biases towards threat compared with children of non-anxious parents. Parents completed questionnaires about their child’s anxiety symptoms. Children aged 5–9 (n = 85) participated in two cognitive bias tasks: 1) an emotion recognition task, and 2) an ambiguous situations questionnaire. For the emotion recognition task, there were no significant differences between at-risk children and children of non-anxious parents in their cognitive bias scores for reaction times or for accuracy in identifying angry or happy facial expressions. In addition, there were no significant differences between at-risk children and children of non-anxious parents in the number of threat interpretations made for the ambiguous situations questionnaire. It is possible that these cognitive biases only become present subsequent to the development of an anxiety disorder, or only in older at-risk children
Haloperidol and Ziprasidone for Treatment of Delirium in Critical Illness
BACKGROUND:
There are conflicting data on the effects of antipsychotic medications on delirium in patients in the intensive care unit (ICU).
METHODS:
In a randomized, double-blind, placebo-controlled trial, we assigned patients with acute respiratory failure or shock and hypoactive or hyperactive delirium to receive intravenous boluses of haloperidol (maximum dose, 20 mg daily), ziprasidone (maximum dose, 40 mg daily), or placebo. The volume and dose of a trial drug or placebo was halved or doubled at 12-hour intervals on the basis of the presence or absence of delirium, as detected with the use of the Confusion Assessment Method for the ICU, and of side effects of the intervention. The primary end point was the number of days alive without delirium or coma during the 14-day intervention period. Secondary end points included 30-day and 90-day survival, time to freedom from mechanical ventilation, and time to ICU and hospital discharge. Safety end points included extrapyramidal symptoms and excessive sedation.
RESULTS:
Written informed consent was obtained from 1183 patients or their authorized representatives. Delirium developed in 566 patients (48%), of whom 89% had hypoactive delirium and 11% had hyperactive delirium. Of the 566 patients, 184 were randomly assigned to receive placebo, 192 to receive haloperidol, and 190 to receive ziprasidone. The median duration of exposure to a trial drug or placebo was 4 days (interquartile range, 3 to 7). The median number of days alive without delirium or coma was 8.5 (95% confidence interval [CI], 5.6 to 9.9) in the placebo group, 7.9 (95% CI, 4.4 to 9.6) in the haloperidol group, and 8.7 (95% CI, 5.9 to 10.0) in the ziprasidone group (P=0.26 for overall effect across trial groups). The use of haloperidol or ziprasidone, as compared with placebo, had no significant effect on the primary end point (odds ratios, 0.88 [95% CI, 0.64 to 1.21] and 1.04 [95% CI, 0.73 to 1.48], respectively). There were no significant between-group differences with respect to the secondary end points or the frequency of extrapyramidal symptoms.
CONCLUSIONS:
The use of haloperidol or ziprasidone, as compared with placebo, in patients with acute respiratory failure or shock and hypoactive or hyperactive delirium in the ICU did not significantly alter the duration of delirium. (Funded by the National Institutes of Health and the VA Geriatric Research Education and Clinical Center; MIND-USA ClinicalTrials.gov number, NCT01211522 .)
A "superstorm": When moral panic and new risk discourses converge in the media
This is an Author's Accepted Manuscript of an article published in Health, Risk and Society, 15(6), 681-698, 2013, copyright Taylor & Francis, available online at: http://www.tandfonline.com/10.1080/13698575.2013.851180.There has been a proliferation of risk discourses in recent decades but studies of these have been polarised, drawing either on moral panic or new risk frameworks to analyse journalistic discourses. This article opens the theoretical possibility that the two may co-exist and converge in the same scare. I do this by bringing together more recent developments in moral panic thesis, with new risk theory and the concept of media logic. I then apply this theoretical approach to an empirical analysis of how and with what consequences moral panic and new risk type discourses converged in the editorials of four newspaper campaigns against GM food policy in Britain in the late 1990s. The article analyses 112 editorials published between January 1998 and December 2000, supplemented with news stories where these were needed for contextual clarity. This analysis shows that not only did this novel food generate intense media and public reactions; these developed in the absence of the type of concrete details journalists usually look for in risk stories. Media logic is important in understanding how journalists were able to engage and hence how a major scare could be constructed around convergent moral panic and new risk type discourses. The result was a media ‘superstorm’ of sustained coverage in which both types of discourse converged in highly emotive mutually reinforcing ways that resonated in a highly sensitised context. The consequence was acute anxiety, social volatility and the potential for the disruption of policy and social change
A terminal assessment of stages theory : introducing a dynamic states approach to entrepreneurship
Stages of Growth models were the most frequent theoretical approach to understanding entrepreneurial business growth from 1962 to 2006; they built on the growth imperative and developmental models of that time. An analysis of the universe of such models (N=104) published in the management literature shows no consensus on basic constructs of the approach, nor is there any empirical confirmations of stages theory. However, by changing two propositions of the stages models, a new dynamic states approach is derived. The dynamic states approach has far greater explanatory power than its precursor, and is compatible with leading edge research in entrepreneurship
Crucial Physical Dependencies of the Core-Collapse Supernova Mechanism
We explore with self-consistent 2D F{\sc{ornax}} simulations the dependence
of the outcome of collapse on many-body corrections to neutrino-nucleon cross
sections, the nucleon-nucleon bremsstrahlung rate, electron capture on heavy
nuclei, pre-collapse seed perturbations, and inelastic neutrino-electron and
neutrino-nucleon scattering. Importantly, proximity to criticality amplifies
the role of even small changes in the neutrino-matter couplings, and such
changes can together add to produce outsized effects. When close to the
critical condition the cumulative result of a few small effects (including
seeds) that individually have only modest consequence can convert an anemic
into a robust explosion, or even a dud into a blast. Such sensitivity is not
seen in one dimension and may explain the apparent heterogeneity in the
outcomes of detailed simulations performed internationally. A natural
conclusion is that the different groups collectively are closer to a realistic
understanding of the mechanism of core-collapse supernovae than might have
seemed apparent.Comment: 25 pages; 10 figure
Searches for very high energy gamma rays from blazars with CANGAROO-III telescope in 2005-2009
We have searched for very high energy (VHE) gamma rays from four blazars
using the CANGAROO-III imaging atmospheric Cherenkov telescope. We report the
results of the observations of H 2356-309, PKS 2155-304, PKS 0537-441, and 3C
279, performed from 2005 to 2009, applying a new analysis to suppress the
effects of the position dependence of Cherenkov images in the field of view. No
significant VHE gamma ray emission was detected from any of the four blazars.
The GeV gamma-ray spectra of these objects were obtained by analyzing Fermi/LAT
archival data. Non-simultaneous wide range (radio to VHE gamma-ray bands)
spectral energy distributions (SEDs) including CANGAROO-III upper limits, GeV
gamma-ray spectra, and archival data are discussed using a one-zone synchrotron
self-Compton (SSC) model in combination with a external Compton (EC) radiation.
The HBLs (H 2356-309 and PKS 2155-304) can be explained by a simple SSC model,
and PKS 0537-441 and 3C 279 are well modeled by a combination of SSC and EC
model. We find a consistency with the blazar sequence in terms of strength of
magnetic field and component size.Comment: 11 pages, 8 figures, Accepted for publication in Astroparticle
Physic
Magnetoluminescence
Pulsar Wind Nebulae, Blazars, Gamma Ray Bursts and Magnetars all contain
regions where the electromagnetic energy density greatly exceeds the plasma
energy density. These sources exhibit dramatic flaring activity where the
electromagnetic energy distributed over large volumes, appears to be converted
efficiently into high energy particles and gamma-rays. We call this general
process magnetoluminescence. Global requirements on the underlying, extreme
particle acceleration processes are described and the likely importance of
relativistic beaming in enhancing the observed radiation from a flare is
emphasized. Recent research on fluid descriptions of unstable electromagnetic
configurations are summarized and progress on the associated kinetic
simulations that are needed to account for the acceleration and radiation is
discussed. Future observational, simulation and experimental opportunities are
briefly summarized.Comment: To appear in "Jets and Winds in Pulsar Wind Nebulae, Gamma-ray Bursts
and Blazars: Physics of Extreme Energy Release" of the Space Science Reviews
serie
Self-Similar Factor Approximants
The problem of reconstructing functions from their asymptotic expansions in
powers of a small variable is addressed by deriving a novel type of
approximants. The derivation is based on the self-similar approximation theory,
which presents the passage from one approximant to another as the motion
realized by a dynamical system with the property of group self-similarity. The
derived approximants, because of their form, are named the self-similar factor
approximants. These complement the obtained earlier self-similar exponential
approximants and self-similar root approximants. The specific feature of the
self-similar factor approximants is that their control functions, providing
convergence of the computational algorithm, are completely defined from the
accuracy-through-order conditions. These approximants contain the Pade
approximants as a particular case, and in some limit they can be reduced to the
self-similar exponential approximants previously introduced by two of us. It is
proved that the self-similar factor approximants are able to reproduce exactly
a wide class of functions which include a variety of transcendental functions.
For other functions, not pertaining to this exactly reproducible class, the
factor approximants provide very accurate approximations, whose accuracy
surpasses significantly that of the most accurate Pade approximants. This is
illustrated by a number of examples showing the generality and accuracy of the
factor approximants even when conventional techniques meet serious
difficulties.Comment: 22 pages + 11 ps figure
- …
