3,016 research outputs found

    Evidence for a Z < 8 Origin of the Source Subtracted Near Infrared Background

    Full text link
    This letter extends our previous fluctuation analysis of the near infrared background at 1.6 microns to the 1.1 micron (F110W) image of the Hubble Ultra Deep field. When all detectable sources are removed the ratio of fluctuation power in the two images is consistent with the ratio expected for faint, z<8, sources, and is inconsistent with the expected ratio for galaxies with z>8. We also use numerically redshifted model galaxy spectral energy distributions for 50 and 10 million year old galaxies to predict the expected fluctuation power at 3.6 microns and 4.5 microns to compare with recent Spitzer observations. The predicted fluctuation power for galaxies at z = 0-12 matches the observed Spitzer fluctuation power while the predicted power for z>13 galaxies is much higher than the observed values. As was found in the 1.6 micron (F160W) analysis the fluctuation power in the source subtracted F110W image is two orders of magnitude below the power in the image with all sources present. This leads to the conclusion that the 0.8--1.8 micron near infrared background is due to resolved galaxies in the redshift range z<8, with the majority of power in the redshift range of 0.5--1.5.Comment: Accepted for publication in the Astrophysical Journa

    Temperature Cable Load Comparison Between Model And Full-Scale Grain Bins

    Get PDF
    The vertical frictional loads imposed by wheat on five different temperature cables in a model and full-scale bin were measured. tests were conducted to determine the influence of radical positioning of the cable, grain discharge rate, and surface characteristics on the vertical frictional loads. qualitative and quantitative comparisons were made between the model and full-scale temperature cable loads. a scale factor was developed by a similitude analysis and was statistically verified by data

    Geodesic Warps by Conformal Mappings

    Full text link
    In recent years there has been considerable interest in methods for diffeomorphic warping of images, with applications e.g.\ in medical imaging and evolutionary biology. The original work generally cited is that of the evolutionary biologist D'Arcy Wentworth Thompson, who demonstrated warps to deform images of one species into another. However, unlike the deformations in modern methods, which are drawn from the full set of diffeomorphism, he deliberately chose lower-dimensional sets of transformations, such as planar conformal mappings. In this paper we study warps of such conformal mappings. The approach is to equip the infinite dimensional manifold of conformal embeddings with a Riemannian metric, and then use the corresponding geodesic equation in order to obtain diffeomorphic warps. After deriving the geodesic equation, a numerical discretisation method is developed. Several examples of geodesic warps are then given. We also show that the equation admits totally geodesic solutions corresponding to scaling and translation, but not to affine transformations

    An Observational Determination of the Proton to Electron Mass Ratio in the Early Universe

    Full text link
    In an effort to resolve the discrepancy between two measurements of the fundamental constant mu, the proton to electron mass ratio, at early times in the universe we reanalyze the same data used in the earlier studies. Our analysis of the molecular hydrogen absorption lines in archival VLT/UVES spectra of the damped Lyman alpha systems in the QSOs Q0347-383 and Q0405-443 yields a combined measurement of a (Delta mu)/mu value of (-7 +/- 8) x 10^{-6}, consistent with no change in the value of mu over a time span of 11.5 gigayears. Here we define (Delta mu) as (mu_z - mu_0) where mu_z is the value of mu at a redshift of z and mu_0 is the present day value. Our null result is consistent with the recent measurements of King et al. 2009, (Delta mu)/u = (2.6 +/- 3.0) x 10^{-6}, and inconsistent with the positive detection of a change in mu by Reinhold et al. 2006. Both of the previous studies and this study are based on the same data but with differing analysis methods. Improvements in the wavelength calibration over the UVES pipeline calibration is a key element in both of the null results. This leads to the conclusion that the fundamental constant mu is unchanged to an accuracy of 10^{-5} over the last 80% of the age of the universe, well into the matter dominated epoch. This limit provides constraints on models of dark energy that invoke rolling scalar fields and also limits the parameter space of Super Symmetric or string theory models of physics. New instruments, both planned and under construction, will provide opportunities to greatly improve the accuracy of these measurements.Comment: Accepted for publication in the Astrophysical Journa

    Super Star Clusters in SBS0335-052E

    Full text link
    As one of the lowest metallicity star forming galaxies, with a nucleus of several super star clusters, SBS0335-052E is the subject of substantial current study. We present new insights on this galaxy based on new and archival high spatial resolution NICMOS and ACS images. We provide new measurements and limits on the size of several of the SSCs. The images have sufficient resolution to divide the star formation into compact regions and newly discovered extended regions, indicating a bi-modal form of star formation. The star formation regions are dated via the equivalent width of the Pa alpha emission and we find that two of the extended regions of star formation are less than 10 million years old. Our previous finding that stellar winds confine the photo-ionizing flux to small regions around individual stars is consistent with the new observations. This may allow planet formation in what would traditionally be considered a harsh environment and has implications for the number of planets around globular cluster stars. In addition the images pinpoint the regions of H2 emission as located in, but not at the center of the two star forming super star clusters, S1 and S2.Comment: Accepted by the Astrophysical Journa

    Delayed Photoionization Feedback in a Super Star Cluster in SBS0335-052E

    Full text link
    SBS0335-052 is a well studied Blue Compact Dwarf galaxy with one of the lowest metallicities of any known galaxy. It also contains 6 previously identified Super Star Clusters. We combine archival HST NICMOS images in the Pa alpha line and the 1.6 micron continuum of the eastern component, SBS0335-052E, with other space and ground based data to perform a multi-wavelength analysis of the super star clusters. We concentrate on the southern most clusters, designated S1 and S2, which appear to be the youngest clusters and are the strongest emitters of Pa alpha, radio, and x-ray flux. Our analysis leads to a possible model for S1 and perhaps S2 as a cluster of very young, massive stars with strong stellar winds. The wind density can be high enough to absorb the majority of ionizing photons within less than 1000 AU of the stars, creating very compact HII regions that emit optically thick radiation at radio wavelengths. These winds would then effectively quench the photoionizing flux very close to the stars. This can delay the onset of negative feedback by photoionization and photodissociation on star formation in the clusters. This is significant since SBS0335-052E resembles the conditions that were probably common for high redshift star formation in galaxies near the epoch of reionization.Comment: Accepted for publication in the Astrophysical Journa
    • …
    corecore