2,671 research outputs found

    Intrinsic and extrinsic factors drive ontogeny of early-life at-sea behaviour in a marine top predator

    Get PDF
    Young animals must learn to forage effectively to survive the transition from parental provisioning to independent feeding. Rapid development of successful foraging strategies is particularly important for capital breeders that do not receive parental guidance after weaning. The intrinsic and extrinsic drivers of variation in ontogeny of foraging are poorly understood for many species. Grey seals (Halichoerus grypus) are typical capital breeders; pups are abandoned on the natal site after a brief suckling phase, and must develop foraging skills without external input. We collected location and dive data from recently-weaned grey seal pups from two regions of the United Kingdom (the North Sea and the Celtic and Irish Seas) using animal-borne telemetry devices during their first months of independence at sea. Dive duration, depth, bottom time, and benthic diving increased over the first 40 days. The shape and magnitude of changes differed between regions. Females consistently had longer bottom times, and in the Celtic and Irish Seas they used shallower water than males. Regional sex differences suggest that extrinsic factors, such as water depth, contribute to behavioural sexual segregation. We recommend that conservation strategies consider movements of young naĂŻve animals in addition to those of adults to account for developmental behavioural changes

    Dynamic Properties of Municipal Solid Waste in a Bioreactor Cell at Orchard Hills Landfill, Illinois, USA

    Get PDF
    Bioreactor landfills enhance municipal solid waste (MSW) degradation through recirculation of leachate inside the waste mass. In-situ monitoring of moisture distribution and changes in mechanical properties (stiffness) of MSW is needed to optimize the safe and effective operation of bioreactor landfills. Geophysical methods, such as electrical resistivity tomography, are shown to have great potential to monitor the moisture distribution. This study is aimed at investigating seismic surveys to characterize changes in dynamic properties (e.g., shear wave velocity and Poisson’s ratio) of MSW to infer the extent of degradation and provide the input needed for seismic stability evaluation. To achieve this goal, a seismic survey was performed in a bioreactor cell, within a MSW landfill (Orchard Hills Landfill, 15 km south of Rockford, Illinois, USA), to image seismic velocity structure and the Poisson’s ratio of MSW. Seismic data were collected through the cell using “fan shot” direct P- (compressional) and S- (shear) wave surveys. The fan shot surveys employed a sledgehammer source on one side of the landfill and geophones on the opposite side, thus exploiting the landfill’s topography and geometry to image MSW to a depth of at least 10 m. P- and S- wave velocity tomographic models from these direct-wave (through-pile) raypaths indicated a dramatic velocity increase below 5 m depth, perhaps indicating consolidation and compaction of MSW. Shear-wave velocity ranged from 150 m/s to 170 m/s. The P/S ratio ranged from 1.8 to 3.7, with an average of about 2.7 and Poisson ratios ranged from 0.29 to 0.46, with an average value of 0.42 (standard deviation 0.024). Below 4-5 m depth, compressional-wave seismic refraction profiling also indicates a subtle change in velocity. Repeated electromagnetic (EM) conductivity measurements with maximum sensitivity at 10 m depth show conductivity increased in the MSW approximately 20-40 mS/m over a 14 month period. Conditions appear to be more uniform at depth as well, after this 14-month interval. Overall, this study showed that seismic and EM surveys have potential to monitor spatial and temporal variation of dynamic properties of MSW and infer the extent of degradation

    Emergence of a Dynamic Super-Structural Order Integrating Antiferroelectric and Antiferrodistortive Competing Instabilities in EuTiO3

    Full text link
    Microscopic structural instabilities of EuTiO3 single crystal were investigated by synchrotron x-ray diffraction. Antiferrodistortive (AFD) oxygen octahedral rotational order was observed alongside Ti derived antiferroelectric (AFE) distortions. The competition between the two instabilities is reconciled through a cooperatively modulated structure allowing both to coexist. The electric and magnetic field effect on the modulated AFD order shows that the origin of large magnetoelectric coupling is based upon the dynamic equilibrium between the AFD - antiferromagnetic interactions versus the electric polarization - ferromagnetic interactions

    3D imaging by serial block face scanning electron microscopy for materials science using ultramicrotomy

    Get PDF
    AbstractMechanical serial block face scanning electron microscopy (SBFSEM) has emerged as a means of obtaining three dimensional (3D) electron images over volumes much larger than possible by focused ion beam (FIB) serial sectioning and at higher spatial resolution than achievable with conventional X-ray computed tomography (CT). Such high resolution 3D electron images can be employed for precisely determining the shape, volume fraction, distribution and connectivity of important microstructural features. While soft (fixed or frozen) biological samples are particularly well suited for nanoscale sectioning using an ultramicrotome, the technique can also produce excellent 3D images at electron microscope resolution in a time and resource-efficient manner for engineering materials. Currently, a lack of appreciation of the capabilities of ultramicrotomy and the operational challenges associated with minimising artefacts for different materials is limiting its wider application to engineering materials. Consequently, this paper outlines the current state of the art for SBFSEM examining in detail how damage is introduced during slicing and highlighting strategies for minimising such damage. A particular focus of the study is the acquisition of 3D images for a variety of metallic and coated systems

    Does Infall End Before the Class I Stage?

    Get PDF
    We have observed HCO+ J=3-2 toward 16 Class I sources and 18 Class 0 sources, many of which were selected from Mardones et al. (1997). Eight sources have profiles significantly skewed to the blue relative to optically thin lines. We suggest six sources as new infall candidates. We find an equal "blue excess" among Class 0 and Class I sources after combining this sample with that of Gregersen et al. (1997). We used a Monte Carlo code to simulate the temporal evolution of line profiles of optically thick lines of HCO+, CS and H2CO in a collapsing cloud and found that HCO+ had the strongest asymmetry at late times. If a blue-peaked line profile implies infall, then the dividing line between the two classes does not trace the end of the infall stage.Comment: 21 pages, 8 figures, accepted by ApJ for April 20, 2000, added acknowledgmen

    Early Responses of Brassica oleracea Roots to Zinc Supply Under Sufficient and Sub-Optimal Phosphorus Supply

    Get PDF
    © Copyright © 2020 Pongrac, Fischer, Thompson, Wright and White. Shoot zinc (Zn) concentration in Brassica oleracea is affected by soil Zn and phosphorus (P) supply. Most problematic is the negative impact of P fertilizers on Zn concentrations in crops, which makes balancing yield and mineral quality challenging. To evaluate early molecular mechanisms involved in the accumulation of large shoot Zn concentrations regardless of the P supply, two B. oleracea accessions differing in root architecture and root exudates were grown hydroponically for two weeks with different combinations of P and Zn supply. Ionome profiling and deep RNA sequencing of roots revealed interactions of P and Zn in planta, without apparent phenotypic effects. In addition, increasing P supply did not reduce tissue Zn concentration. Substantial changes in gene expression in response to different P and/or Zn supplies in roots of both accessions ensured nutritionally sufficient P and Zn uptake. Numerous genes were differentially expressed after changing Zn or P supply and most of them were unique to only one accession, highlighting their different strategies in achieving nutrient sufficiency. Thus, different gene networks responded to the changing P and Zn supply in the two accessions. Additionally, enrichment analysis of gene ontology classes revealed that genes involved in lipid metabolism, response to starvation, and anion transport mechanisms were most responsive to differences in P and Zn supply in both accessions. The results agreed with previously studies demonstrating alterations in P and Zn transport and phospholipid metabolism in response to reduced P and Zn supply. It is anticipated that improved knowledge of genes responsive to P or Zn supply will help illuminate the roles in uptake and accumulation of P and Zn and might identify candidate genes for breeding high-yield-high-Zn brassicas

    Limits to the biofortification of leafy brassicas with zinc

    Get PDF
    Many humans lack sufficient zinc (Zn) in their diet for their wellbeing and increasing Zn concentrations in edible produce (biofortification) can mitigate this. Recent efforts have focused on biofortifying staple crops. However, greater Zn concentrations can be achieved in leafy vegetables than in fruits, seeds, or tubers. Brassicas, such as cabbage and broccoli, are widely consumed and might provide an additional means to increase dietary Zn intake. Zinc concentrations in brassicas are limited primarily by Zn phytotoxicity. To assess the limits of Zn biofortification of brassicas, the Zn concentration in a peat:sand (v/v 75:25) medium was manipulated to examine the relationship between shoot Zn concentration and shoot dry weight (DW) and thereby determine the critical shoot Zn concentrations, defined as the shoot Zn concentration at which yield is reduced below 90%. The critical shoot Zn concentration was regarded as the commercial limit to Zn biofortification. Experiments were undertaken over six successive years. A linear relationship between Zn fertiliser application and shoot Zn concentration was observed at low application rates. Critical shoot Zn concentrations ranged from 0.074 to 1.201 mg Zn g−1 DW among cabbage genotypes studied in 2014, and between 0.117 and 1.666 mg Zn g−1 DW among broccoli genotypes studied in 2015–2017. It is concluded that if 5% of the dietary Zn intake of a population is currently delivered through brassicas, then the biofortification of brassicas from 0.057 to > 0.100 mg Zn g−1 DW through the application of Zn fertilisers could increase dietary Zn intake substantially
    • 

    corecore