3,217 research outputs found

    Operant conditioning of spinal reflexes: from basic science to clinical therapy

    Get PDF
    New appreciation of the adaptive capabilities of the nervous system, recent recognition that most spinal cord injuries are incomplete, and progress in enabling regeneration are generating growing interest in novel rehabilitation therapies. Here we review the 35-year evolution of one promising new approach, operant conditioning of spinal reflexes. This work began in the late 1970’s as basic science; its purpose was to develop and exploit a uniquely accessible model for studying the acquisition and maintenance of a simple behavior in the mammalian central nervous system (CNS). The model was developed first in monkeys and then in rats, mice, and humans. Studies with it showed that the ostensibly simple behavior (i.e., a larger or smaller reflex) rests on a complex hierarchy of brain and spinal cord plasticity; and current investigations are delineating this plasticity and its interactions with the plasticity that supports other behaviors. In the last decade, the possible therapeutic uses of reflex conditioning have come under study, first in rats and then in humans. The initial results are very exciting, and they are spurring further studies. At the same time, the original basic science purpose and the new clinical purpose are enabling and illuminating each other in unexpected ways. The long course and current state of this work illustrate the practical importance of basic research and the valuable synergy that can develop between basic science questions and clinical needs

    A Search for Additional Bodies in the GJ 1132 Planetary System from 21 Ground-based Transits and a 100 Hour Spitzer Campaign

    Get PDF
    We present the results of a search for additional bodies in the GJ 1132 system through two methods: photometric transits and transit timing variations of the known planet. We collected 21 transit observations of GJ 1132b with the MEarth-South array since 2015. We obtained 100 near-continuous hours of observations with the SpitzerSpitzer Space Telescope, including two transits of GJ 1132b and spanning 60\% of the orbital phase of the maximum period at which bodies coplanar with GJ 1132b would pass in front of the star. We exclude transits of additional Mars-sized bodies, such as a second planet or a moon, with a confidence of 99.7\%. When we combine the mass estimate of the star (obtained from its parallax and apparent KsK_s band magnitude) with the stellar density inferred from our high-cadence SpitzerSpitzer light curve (assuming zero eccentricity), we measure the stellar radius of GJ 1132 to be 0.21050.0085+0.0102R0.2105^{+0.0102}_{-0.0085} R_\odot, and we refine the radius measurement of GJ 1132b to 1.130±0.056R1.130 \pm 0.056 R_\oplus. Combined with HARPS RV measurements, we determine the density of GJ 1132b to be 6.2±2.06.2 \pm 2.0\ g cm3^{-3}, with the mass determination dominating this uncertainty. We refine the ephemeris of the system and find no evidence for transit timing variations, which would be expected if there was a second planet near an orbital resonance with GJ 1132b.Comment: 29 pages, 4 Tables, 8 Figures, Submitted to ApJ. Comments welcom

    The rotation and Galactic kinematics of mid M dwarfs in the Solar Neighborhood

    Full text link
    Rotation is a directly-observable stellar property, and drives magnetic field generation and activity through a magnetic dynamo. Main sequence stars with masses below approximately 0.35Msun (mid-to-late M dwarfs) are fully-convective, and are expected to have a different type of dynamo mechanism than solar-type stars. Measurements of their rotation rates provide insights into these mechanisms, but few rotation periods are available for these stars at field ages. Using photometry from the MEarth transit survey, we measure rotation periods for 387 nearby, mid-to-late M dwarfs in the Northern hemisphere, finding periods from 0.1 to 140 days. The typical detected rotator has stable, sinusoidal photometric modulations at a semi-amplitude of 0.5 to 1%. We find no period-amplitude relation for stars below 0.25Msun and an anti-correlation between period and amplitude for higher-mass M dwarfs. We highlight the existence of older, slowly-rotating stars without H{\alpha} emission that nevertheless have strong photometric variability. The Galactic kinematics of our sample is consistent with the local population of G and K dwarfs, and rotators have metallicities characteristic of the Solar Neighborhood. We use the W space velocities and established age-velocity relations to estimate that stars with P<10 days are on average <2 Gyrs, and that those with P>70 days are about 5 Gyrs. The period distribution is mass dependent: as the mass decreases, the slowest rotators at a given mass have longer periods, and the fastest rotators have shorter periods. We find a lack of stars with intermediate rotation periods. [Abridged]Comment: Accepted to ApJ. Machine readable tables and additional figures are available in the published article or on reques

    The Influence of Land Use and Climate Change on Forest Biomass and Composition in Massachusetts, USA

    Get PDF
    Land use and climate change have complex and interacting effects on naturally dynamic forest landscapes. To anticipate and adapt to these changes, it is necessary to understand their individual and aggregate impacts on forest growth and composition. We conducted a simulation experiment to evaluate regional forest change in Massachusetts, USA over the next 50 years (2010–2060). Our objective was to estimate, assuming a linear continuation of recent trends, the relative and interactive influence of continued growth and succession, climate change, forest conversion to developed uses, and timber harvest on live aboveground biomass (AGB) and tree species composition. We examined 20 years of land use records in relation to social and biophysical explanatory variables and used regression trees to create “probability-of-conversion” and “probability-of-harvest” zones. We incorporated this information into a spatially interactive forest landscape simulator to examine forest dynamics as they were affected by land use and climate change. We conducted simulations in a full-factorial design and found that continued forest growth and succession had the largest effect on AGB, increasing stores from 181.83 Tg to 309.56 Tg over 50 years. The increase varied from 49% to 112% depending on the ecoregion within the state. Compared to simulations with no climate or land use, forest conversion reduced gains in AGB by 23.18 Tg (or 18%) over 50 years. Timber harvests reduced gains in AGB by 5.23 Tg (4%). Climate change (temperature and precipitation) increased gains in AGB by 17.3 Tg (13.5%). Pinus strobus and Acer rubrum were ranked first and second, respectively, in terms of total AGB throughout all simulations. Climate change reinforced the dominance of those two species. Timber harvest reduced Quercus rubra from 10.8% to 9.4% of total AGB, but otherwise had little effect on composition. Forest conversion was generally indiscriminate in terms of species removal. Under the naïve assumption that future land use patterns will resemble the recent past, we conclude that continued forest growth and recovery will be the dominant mechanism driving forest dynamics over the next 50 years, and that while climate change may enhance growth rates, this will be more than offset by land use, primarily forest conversion to developed uses

    Implementing Effective Tiered Interventions in Secondary Schools: Survey of school and support staff

    Get PDF
    An online survey and a series of interviews were focused on students in Years 7 to 9 who lack the foundational literacy and numeracy skills that are required to engage with a secondary curriculum, in schools where most students have these skills. These students are referred to throughout this report as struggling students. The students in scope are likely to struggle to engage in classes without significant differentiation on the part of classroom teachers, and the skill disparity may be so great that differentiating lessons for them is not feasible. The project sought to address 4 questions: What methods and/or assessments do schools use to identify students in this cohort? What frameworks do schools use to make decisions on how to support these students? What supports are provided? What confidence do school leaders and teachers have in the approaches currently used? This report provides an overview of the survey development, administration, and respondent demographics, and looks at the results of the survey for literacy and for numeracy. Additional detail and context provided by interview responses is included in the appropriate sections that discuss survey responses

    Co-designed Land-use Scenarios and their Implications for Storm Runoff and Streamflow in New England

    Get PDF
    Landscape and climate changes have the potential to create or exacerbate problems with stormwater management, high flows, and flooding. In New England, four plausible land-use scenarios were co-developed with stakeholders to give insight to the effects on ecosystem services of different trajectories of socio-economic connectedness and natural resource innovation. With respect to water, the service of greatest interest to New England stakeholders is the reduction of stormwater and flooding. To assess the effects of these land-use scenarios, we applied the Soil and Water Assessment Tool to two watersheds under two climates. Differences in land use had minimal effects on the water balance but did affect high flows and the contribution of storm runoff to streamflow. For most scenarios, the effect on high flows was small. For one scenario—envisioned to have global socio-economic connectedness and low levels of natural resource innovation—growth in impervious areas increased the annual maximum daily flow by 10%, similar to the 5–15% increase attributable to climate change. Under modest population growth, land-use decisions have little effect on storm runoff and high flows; however, for the two scenarios characterized by global socio-economic connectedness, differences in choices regarding land use and impervious area have a large impact on the potential for flooding. Results also indicate a potential interaction between climate and land use with a shift to more high flows resulting from heavy rains than from snowmelt. These results can help inform land use and development, especially when combined with assessments of effects on other ecosystem services
    corecore