172 research outputs found

    Overview of MSFC Additive Electronics Capabilities

    Get PDF
    Focus: Marshall seeks to support the Agency in the development of next generation printed electronics technologies for living and working in space, with emphasis on enhanced electronics manufacturing processes and capabilities development on the ground and in-space. Near-Term: Human Habitation Elements and Life Support Systems - pursuing integrated flexible wearable air, water, vital monitoring solutions for next generation printed technologies; Complete startup printing technology demonstrations which prove basic processes and establish ISM (In-Space Manufacturing) infrastructure needed for future applications including metals based manufacturing. Medium Term: Target low-cost research and demonstration activities that support multi-material additive manufacturing, more sophisticated parts production, printed electronics and ISM; Maturation and flight demonstration of printed propulsion system components, with emphasis on infusion into small-spacecraft-based missions. Long-Term: Evolve systems capabilities to be supportive of destination (lunar or Mars) resources and requirements, increase autonomy in systems and utilize in-situ resources towards manufacturing; Support development of self-replicable systems and their infusion into future spacecraft and missions

    Design of Experiment for the Measurement of Aerosol Droplet Size Distribution of Temperature-Controlled Thermally Atomized Printed Electronic Inks

    Get PDF
    In-Space Manufacturing (ISM) centers around NASAs growing need and ability to produce space technologies on demand in space. As the future of long term presence in space and deep space exploration approach, fundamental questions of our dependence on earth resupply to Low Earth Orbit (LEO) remain unanswered. ISM is leading various effort to evaluate the feasibility of producing essential spares and redundant parts on demand to enable a sustainable space-based supply chain model for part resupply. Among the parts and systems being considered, Avionics form the neural network of modern day aircraft and space vehicles providing a wealth of information ranging from Guidance, Navigation, and Control (GN&C) systems to on board Environmental Control and Life Support (ECLS) systems. Recent advances in the use of Aerosol Jet Technology to print Avionics components ranging from electrical traces on a circuit board to complex transistors and sensors raise the possibility of using such technology to reproduce or recreate electronic parts on demand with the help of custom electronics 3D printers. The challenge herein lies within the ability of such printers to generate and deposit an aerosol of electronic material utilizing processes independent of or enhanced by gravity to ensure controllably identical or improved behavior of the aerosol in an International Space Station (ISS) laboratory and on the ground. The behavior as well as the hazards and properties associated with such aerosols in a microgravity environment must be understood well in order to merit a feasible approach to utilizing them for manufacturing in space. In this report, we outline the experimental setup of a modified conventional vaping device to be used as the ideal gravity independent thermal atomization mechanism to generate aerosol. Our objective is to identify the ideal mass, density, and volume of our aerosolized droplets of ink to conclude that there exist a threshold of aerosolized ink droplet sizes that are indeed independent of the effects of gravity and remain stable after atomization. We use a Malvern Spraytec Spray Particle Size Analyzer to perform real-time laser diffraction measurement of our ink droplets during atomization. The droplet size between conductive ink, dielectric ink and vegetable glycerin have been measured and contrasted. Furthermore, the mechanism of thermal atomization versus traditional pneumatic and ultrasonic atomization for operation in microgravity have been explored

    Application of Temperature-Controlled Thermal Atomization for Printing Electronics in Space

    Get PDF
    Additive Manufacturing (AM) is a technology that builds three dimensional objects by adding material layer-upon-layer throughout the fabrication process. The Electrical, Electronic and Electromechanical (EEE) parts packaging group at Marshall Space Flight Center (MSFC) is investigating how various AM and 3D printing processes can be adapted to the microgravity environment of space to enable on demand manufacturing of electronics. The current state-of-the art processes for accomplishing the task of printing electronics through non-contact, direct-write means rely heavily on the process of atomization of liquid inks into fine aerosols to be delivered ultimately to a machine's print head and through its nozzle. As a result of cumulative International Space Station (ISS) research into the behaviors of fluids in zero-gravity, our experience leads us to conclude that the direct adaptation of conventional atomization processes will likely fall short and alternative approaches will need to be explored. In this report, we investigate the development of an alternative approach to atomizing electronic materials by way of thermal atomization, to be used in place of conventional aerosol generation and delivery processes for printing electronics in space

    The self-dual gauge fields and the domain wall fermion zero modes

    Full text link
    A new type of gauge fixing of the Coulomb gauge domain wall fermion system that reduces the fluctuation of the effective running coupling and the effective mass of arbitrary momentum direction including the region outside the cylinder cut region is proposed and tested in the 163×32×1616^3\times 32\times 16 gauge configurations of RBC/UKQCD collaboration. The running coupling at the lowest momentum point does not show infrared suppression and compatible with the experimental data extracted from the JLab collaboration. The source of the fluctuation of the effective mass near momentum p=p=0.6GeV region is expected to be due to the domain wall fermion zero modes.Comment: 12 pages 2 figures, extended arguments and references adde

    Topology and chiral symmetry breaking in SU(N) gauge theories

    Get PDF
    We study the low-lying eigenmodes of the lattice overlap Dirac operator for SU(N) gauge theories with N=2,3,4 and 5 colours. We define a fermionic topological charge from the zero-modes of this operator and show that, as N grows, any disagreement with the topological charge obtained by cooling the fields, becomes rapidly less likely. By examining the fields where there is a disagreement, we are able to show that the Dirac operator does not resolve instantons below a critical size of about rho = 2.5 a, but resolves the larger, more physical instantons. We investigate the local chirality of the near-zero modes and how it changes as we go to larger N. We observe that the local chirality of these modes, which is prominent for SU(2) and SU(3), becomes rapidly weaker for larger N and is consistent with disappearing entirely in the limit of N -> infinity. We find that this is not due to the observed disappearance of small instantons at larger N.Comment: 41 pages, 12 figures, RevTe

    Development of a Tumor-Selective Approach to Treat Metastatic Cancer

    Get PDF
    BACKGROUND: Patients diagnosed with metastatic cancer have almost uniformly poor prognoses. The treatments available for patients with disseminated disease are usually not curative and have side effects that limit the therapy that can be given. A treatment that is selectively toxic to tumors would maximize the beneficial effects of therapy and minimize side effects, potentially enabling effective treatment to be administered. METHODS AND FINDINGS: We postulated that the tumor-tropic property of stem cells or progenitor cells could be exploited to selectively deliver a therapeutic gene to metastatic solid tumors, and that expression of an appropriate transgene at tumor loci might mediate cures of metastatic disease. To test this hypothesis, we injected HB1.F3.C1 cells transduced to express an enzyme that efficiently activates the anti-cancer prodrug CPT-11 intravenously into mice bearing disseminated neuroblastoma tumors. The HB1.F3.C1 cells migrated selectively to tumor sites regardless of the size or anatomical location of the tumors. Mice were then treated systemically with CPT-11, and the efficacy of treatment was monitored. Mice treated with the combination of HB1.F3.C1 cells expressing the CPT-11-activating enzyme and this prodrug produced tumor-free survival of 100% of the mice for >6 months (P<0.001 compared to control groups). CONCLUSIONS: The novel and significant finding of this study is that it may be possible to exploit the tumor-tropic property of stem or progenitor cells to mediate effective, tumor-selective therapy for metastatic tumors, for which no tolerated curative treatments are currently available

    Instability of aquaglyceroporin (Aqp) 2 contributes to drug resistance in trypanosoma brucei

    Get PDF
    Defining mode of action is vital for both developing new drugs and predicting potential resistance mechanisms. Sensitivity of African trypanosomes to pentamidine and melarsoprol is predominantly mediated by aquaglyceroporin 2 (TbAQP2), a channel associated with water/glycerol transport. TbAQP2 is expressed at the flagellar pocket membrane and chimerisation with TbAQP3 renders parasites resistant to both drugs. Two models for how TbAQP2 mediates pentamidine sensitivity have emerged; that TbAQP2 mediates pentamidine translocation across the plasma membrane or via binding to TbAQP2, with subsequent endocytosis and presumably transport across the endosomal/lysosomal membrane, but as trafficking and regulation of TbAQPs is uncharacterised this remains unresolved. We demonstrate that TbAQP2 is organised as a high order complex, is ubiquitylated and is transported to the lysosome. Unexpectedly, mutation of potential ubiquitin conjugation sites, i.e. cytoplasmic-oriented lysine residues, reduced folding and tetramerization efficiency and triggered ER retention. Moreover, TbAQP2/TbAQP3 chimerisation, as observed in pentamidine-resistant parasites, also leads to impaired oligomerisation, mislocalisation and increased turnover. These data suggest that TbAQP2 stability is highly sensitive to mutation and that instability contributes towards the emergence of drug resistance

    Identification and reconstruction of low-energy electrons in the ProtoDUNE-SP detector

    Full text link
    Measurements of electrons from νe\nu_e interactions are crucial for the Deep Underground Neutrino Experiment (DUNE) neutrino oscillation program, as well as searches for physics beyond the standard model, supernova neutrino detection, and solar neutrino measurements. This article describes the selection and reconstruction of low-energy (Michel) electrons in the ProtoDUNE-SP detector. ProtoDUNE-SP is one of the prototypes for the DUNE far detector, built and operated at CERN as a charged particle test beam experiment. A sample of low-energy electrons produced by the decay of cosmic muons is selected with a purity of 95%. This sample is used to calibrate the low-energy electron energy scale with two techniques. An electron energy calibration based on a cosmic ray muon sample uses calibration constants derived from measured and simulated cosmic ray muon events. Another calibration technique makes use of the theoretically well-understood Michel electron energy spectrum to convert reconstructed charge to electron energy. In addition, the effects of detector response to low-energy electron energy scale and its resolution including readout electronics threshold effects are quantified. Finally, the relation between the theoretical and reconstructed low-energy electron energy spectrum is derived and the energy resolution is characterized. The low-energy electron selection presented here accounts for about 75% of the total electron deposited energy. After the addition of lost energy using a Monte Carlo simulation, the energy resolution improves from about 40% to 25% at 50~MeV. These results are used to validate the expected capabilities of the DUNE far detector to reconstruct low-energy electrons.Comment: 19 pages, 10 figure
    corecore