1,284 research outputs found
Induction of peripheral tolerance in ongoing autoimmune inflammation requires interleukin 27 signaling in dendritic cells
Peripheral tolerance to autoantigens is induced via suppression of self-reactive lymphocytes, stimulation of tolerogenic dendritic cells (DCs) and regulatory T (Treg) cells. Interleukin (IL)-27 induces tolerogenic DCs and Treg cells; however, it is not known whether IL-27 is important for tolerance induction. We immunized wild-type (WT) and IL-27 receptor (WSX-1) knockout mice with MOG35-55 for induction of experimental autoimmune encephalomyelitis and intravenously (i.v.) injected them with MOG35-55 after onset of disease to induce i.v. tolerance. i.v. administration of MOG35-55 reduced disease severity in WT mice, but was ineffective in Wsx-/- mice. IL-27 signaling in DCs was important for tolerance induction, whereas its signaling in T cells was not. Further mechanistic studies showed that IL-27-dependent tolerance relied on cooperation of distinct subsets of spleen DCs with the ability to induce T cell-derived IL-10 and IFN-γ. Overall, our data show that IL-27 is a key cytokine in antigen-induced peripheral tolerance and may provide basis for improvement of antigen-specific tolerance approaches in multiple sclerosis and other autoimmune diseases. © 2017 Thom, Moore, Mari, Rasouli, Hwang, Yoshimura, Ciric, Zhang and Rostami
Idempotency of linear combinations of an idempotent matrix and a t-potent matrix that commute
AbstractThis paper deals with idempotent matrices (i.e., A2=A) and t-potent matrices (i.e., Bt=B). When both matrices commute, we derive a list of all complex numbers c1 and c2 such that c1A+c2B is an idempotent matrix. In addition, the real case is also analyzed
Procrustes problem for the inverse eigenvalue problem of normal (skew) -Hamiltonian matrices and normal -symplectic matrices
A square complex matrix is called (skew) -Hamiltonian if is
(skew) hermitian where is a real normal matrix such that , where
is the identity matrix. In this paper, we solve the Procrustes problem to
find normal (skew) -Hamiltonian solutions for the inverse eigenvalue
problem. In addition, a similar problem is investigated for normal
-symplectic matrices.Comment: 25 page
Extending EP matrices by means of recent generalized inverses
It is well known that a square complex matrix is called EP if it commutes
with its Moore-Penrose inverse. In this paper, new classes of matrices which
extend this concept are characterized. For that, we consider commutative
equalities given by matrices of arbitrary index and generalized inverses
recently investigated in the literature. More specifically, these classes are
characterized by expressions of type , where is an outer inverse
of a given complex square matrix and is an arbitrary positive integer.
The relationships between the different classes of matrices are also analyzed.
Finally, a picture presents an overview of the overall studied classes
The weak core inverse
[EN] In this paper, we introduce a new generalized inverse, called weak core inverse (or, in short, WC inverse) of a complex square matrix. This new inverse extends the notion of the core inverse defined by Baksalary and Trenkler (Linear Multilinear Algebra 58(6):681-697, 2010). We investigate characterizations, representations, and properties for this generalized inverse. In addition, we introduce weak core matrices (or, in short, WC matrices) and we show that these matrices form a more general class than that given by the known weak group matrices, recently investigated by H. Wang and X. Liu.In what follows, we detail the acknowledgements. D.E. Ferreyra, F.E. Levis, A.N. Priori - Partially supported by Universidad Nacional de Rio Cuarto (Grant PPI 18/C559) and CONICET (Grant PIP 112-201501-00433CO). D.E. Ferreyra F.E. Levis - Partially supported by ANPCyT (Grant PICT 201803492). D.E. Ferreyra, N. Thome -Partially supported by Universidad Nacional de La Pampa, Facultad de Ingenieria (Grant Resol. Nro. 135/19). N. Thome -Partially supported by Ministerio de Economia, Industria y Competitividad of Spain (Grant Red de Excelencia MTM2017-90682-REDT) and by Universidad Nacional del Sur of Argentina (Grant 24/L108). We would like to thank the Referees for their valuable comments and suggestions which helped us to considerably improve the presentation of the paperFerreyra, DE.; Levis, FE.; Priori, AN.; Thome, N. (2021). The weak core inverse. Aequationes Mathematicae. 95(2):351-373. https://doi.org/10.1007/s00010-020-00752-zS351373952Ben-Israel, A., Greville, T.N.E.: Generalized Inverses: Theory and Applications, 2nd edn. Springer, New York (2003)Baksalary, O.M., Trenkler, G.: Core inverse of matrices. Linear Multilinear Algebra 58(6), 681–697 (2010)Baksalary, O.M., Trenkler, G.: On a generalized core inverse. Appl. Math. Comput. 236(1), 450–457 (2014)Campbell, S.L., Meyer Jr., C.D.: Generalized Inverses of Linear Transformations. SIAM, Philadelphia (2009)Ceryan, N.: Handbook of Research on Trends and Digital Advances in Engineering Geology, Advances in Civil and Industrial Engineering. IGI Global, Hershey (2018)Chen, J.L., Mosić, D., Xu, S.Z.: On a new generalized inverse for Hilbert sapce operators. Quaest. Math. (2019). https://doi.org/10.2989/16073606.2019.1619104Cvetković-Ilić, D.S., Mosić, D., Wei, Y.: Partial orders on . Linear Algebra Appl. 481, 115–130 (2015)Djikić, M.S.: Lattice properties of the core-partial order. Banach J. Math. Anal. 11(2), 398–415 (2017)Doty, K.L., Melchiorri, C., Bonivento, C.: A theory of generalized inverses applied to robotics. Int. J. Robot. Res. 12(1), 1–19 (1993)Drazin, M.P.: Pseudo inverses in associative rings and semigroups. Am. Math. Mon. 65(7), 506–514 (1958)Ferreyra, D.E., Levis, F.E., Thome, N.: Revisiting of the core EP inverse and its extension to rectangular matrices. Quaest. Math. 41(2), 265–281 (2018)Ferreyra, D.E., Levis, F.E., Thome, N.: Maximal classes of matrices determining generalized inverses. Appl. Math. Comput. 333, 42–52 (2018)Ferreyra, D.E., Levis, F.E., Thome, N.: Characterizations of -commutative equalities for some outer generalized inverses. Linear Multilinear Algebra 68(1), 177–192 (2020)Hartwig, R.E., Spindelböck, K.: Matrices for which and conmmute. Linear Multilinear Algebra 14(3), 241–256 (1984)Liu, X., Cai, N.: High-order iterative methods for the DMP inverse. J. Math. Article ID 8175935, 6 p (2018)Malik, S., Thome, N.: On a new generalized inverse for matrices of an arbitrary index. Appl. Math. Comput. 226(1), 575–580 (2014)Malik, S., Rueda, L., Thome, N.: The class of -EP and -normal matrices. Linear Multilinear Algebra 64(11), 2119–2132 (2016)Manjunatha Prasad, K., Mohana, K.S.: Core EP inverse. Linear Multilinear Algebra 62(6), 792–802 (2014)Mehdipour, M., Salemi, A.: On a new generalized inverse of matrices. Linear Multilinear Algebra 66(5), 1046–1053 (2018)Mitra, S.K., Bhimasankaram, P., Malik, S.: Matrix Partial Orders, Shorted Operators and Applications, Series in Algebra, vol. 10. World Scientific Publishing Co. Pte. Ltd., Singapore (2010)Mosić, D., Stanimirović, P.S.: Composite outer inverses for rectangular matrices. Quaest. Math. (2019). https://doi.org/10.2989/16073606.2019.1671526Penrose, R.: A generalized inverse for matrices. Math. Proc. Cambr. Philos. Soc. 51(3), 406–413 (1955)Rakić, D.S., Dincić, N.C., Djordjević, D.S.: Core inverse and core partial order of Hilbert space operators. Appl. Math. Comput. 244(1), 283–302 (2014)Soleimani, F., Stanimirović, P.S., Soleymani, F.: Some matrix iterations for computing generalized inverses and balancing chemical equations. Algorithms 8(4), 982–998 (2015)Tosić, M., Cvetković-Ilić, D.S.: Invertibility of a linear combination of two matrices and partial orderings. Appl. Math. Comput. 218(9), 4651–4657 (2012)Wang, X.: Core-EP decomposition and its applications. Linear Algebra Appl. 508(1), 289–300 (2016)Wang, H., Chen, J.: Weak group inverse. Open Math. 16(1), 1218–1232 (2018)Wang, H., Liu, X.: The weak group matrix. Aequ. Math. 93(6), 1261–1273 (2019)Xiao, G.Z., Shen, B.Z., Wu, C.K., Wong, C.S.: Some spectral techniques in coding theory. Discrete Math. 87(2), 181–186 (1991)Zhou, M., Chen, J., Stanimirović, P., Katsikis, V.N., Ma, H.: Complex varying-parameter Zhang neural networks for computing core and core-EP inverse. Neural Process. Lett. 51, 1299–1329 (2020)Zhu, H.: On DMP inverses and -EP elements in rings. Linear Multilinear Algebra 67(4), 756–766 (2019)Zhu, H., Patrício, P.: Several types of one-sided partial orders in rings. Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM 113, 3177–3184 (2019
Transmittance Measurement of a Heliostat Facility used in the Preflight Radiometric Calibration of Earth-Observing Sensors
Ball Aerospace and Technologies Corporation in Boulder, Colorado, has developed a heliostat facility that will be used to determine the preflight radiometric calibration of Earth-observing sensors that operate in the solar-reflective regime. While automatically tracking the Sun, the heliostat directs the solar beam inside a thermal vacuum chamber, where the sensor under test resides. The main advantage to using the Sun as the illumination source for preflight radiometric calibration is because it will also be the source of illumination when the sensor is in flight. This minimizes errors in the pre- and post-launch calibration due to spectral mismatches. It also allows the instrument under test to operate at irradiance values similar to those on orbit. The Remote Sensing Group at the University of Arizona measured the transmittance of the heliostat facility using three methods, the first of which is a relative measurement made using a hyperspectral portable spectroradiometer and well-calibrated reference panel. The second method is also a relative measurement, and uses a 12-channel automated solar radiometer. The final method is an absolute measurement using a hyperspectral spectroradiometer and reference panel combination, where the spectroradiometer is calibrated on site using a solar-radiation-based calibration
Caspase-mediated cleavage of raptor participates in the inactivation of mTORC1 during cell death.
The mammalian target of rapamycin complex 1 (mTORC1) is a highly conserved protein complex regulating key pathways in cell growth. Hyperactivation of mTORC1 is implicated in numerous cancers, thus making it a potential broad-spectrum chemotherapeutic target. Here, we characterized how mTORC1 responds to cell death induced by various anticancer drugs such rapamycin, etoposide, cisplatin, curcumin, staurosporine and Fas ligand. All treatments induced cleavage in the mTORC1 component, raptor, resulting in decreased raptor-mTOR interaction and subsequent inhibition of the mTORC1-mediated phosphorylation of downstream substrates (S6K and 4E-BP1). The cleavage was primarily mediated by caspase-6 and occurred at two sites. Mutagenesis at one of these sites, conferred resistance to cell death, indicating that raptor cleavage is important in chemotherapeutic apoptosis
CLOCK Genes and Circadian Rhythmicity in Alzheimer Disease
Disturbed circadian rhythms with sleep problems and disrupted diurnal activity are often seen in patients suffering from Alzheimer disease (AD). Both endogenous CLOCK genes and external Zeitgeber are responsible for the maintenance of circadian rhythmicity in humans. Therefore, modifications of the internal CLOCK system and its interactions with exogenous factors might constitute the neurobiological basis for clinically observed disruptions in rhythmicity, which often have grave consequences for the quality of life of patients and their caregivers. Presently, more and more data are emerging demonstrating how alterations of the CLOCK gene system might contribute to the pathophysiology of AD and other forms of dementia. At the same time, the impact of neuropsychiatric medication on CLOCK gene expression is under investigation
ADHD 24/7:Circadian clock genes, chronotherapy and sleep/wake cycle insufficiencies in ADHD
Objectives: The current paper addresses the evidence for circadian clock characteristics associated with attention-deficit hyperactivity disorder (ADHD), and possible therapeutic approaches based on chronomodulation through bright light (BL) therapy. Methods: We review the data reported in ADHD on genetic risk factors for phase-delayed circadian rhythms and on the role of photic input in circadian re-alignment. Results: Single nucleotide polymorphisms in circadian genes were recently associated with core ADHD symptoms, increased evening-orientation and frequent sleep problems. Additionally, alterations in exposure and response to photic input may underlie circadian problems in ADHD. BL therapy was shown to be effective for re-alignment of circadian physiology toward morningness, reducing sleep disturbances and bringing overall improvement in ADHD symptoms. The susceptibility of the circadian system to phase shift by timed BL exposure may have broad cost-effective potential implications for the treatment of ADHD. Conclusions: We conclude that further research of circadian function in ADHD should focus on detection of genetic markers (e.g., using human skin fibroblasts) and development of BL-based therapeutic interventions
- …