5 research outputs found

    Bulk synthesis of stoichiometric/meteoritic troilite (FeS) by high-temperature pyrite decomposition and pyrrhotite melting

    Get PDF
    Stoichiometric troilite (FeS) is a common phase in differentiated and undifferentiated meteorites. It is the endmember of the iron sulfide system. Troilite is important for investigating shock metamorphism in meteorites and studying spectral properties and space weathering of planetary bodies. Thus, obtaining coarse-grained meteoritic troilite in quantities is beneficial for these fields. The previous synthesis of troilite was achieved by pyrite or pyrrhotite heating treatments or chemical syntheses. However, most of these works lacked a visual characterization of the step by step process and the final product, the production of large quantities, and they were not readily advertised to planetary scientists or the meteoritical research community. Here, we illustrate a two-step heat treatment of pyrite to synthesize troilite. Pyrite powder was decomposed to pyrrhotite at 1023-1073 K for 4-6 h in Ar; the run product was then retrieved and reheated for 1 h at 1498-1598 K in N-2 (gas). The minerals were analyzed with a scanning electron microscope, X-ray diffraction (XRD) at room temperature, and in situ high-temperature XRD. The primary observation of synthesis from pyrrhotite to troilite is the shift of a major diffraction peak from similar to 43.2 degrees 2 theta to similar to 43.8 degrees 2 theta. Troilite spectra matched an XRD analysis of natural meteoritic troilite. Slight contamination of Fe was observed during cooling to troilite, and alumina crucibles locally reacted with troilite. The habitus and size of troilite crystals allowed us to store it as large grains rather than powder; 27 g of pyrite yielded 17 g of stochiometric troilite.Peer reviewe

    The Electrochemical Behaviour of Quaternary Amine-Based Room-Temperature Ionic Liquid N4111(TFSI)

    No full text
    In this study, we used the in situ X-ray photoelectron spectroscopy (XPS), in situ mass spectroscopy, cyclic voltammetry and electrochemical impedance spectroscopy methods, for the first time, in a detailed exploration of the electrochemical behaviour of a quaternary amine cation-based room-temperature ionic liquid, butyl-trimethyl-ammonium bis(trifluoromethylsulfonyl)imide (N4111(TFSI)), at the negatively and positively polarised molybdenum carbide-derived micro-mesoporous carbon (mmp-C(Mo2C)) electrodes that can be used as high surface area supporting material for electrocatalysts. The shapes of the C 1s, N 1s, O 1s, F 1s and S 2p XPS spectra were stable for N4111(TFSI) within a very wide potential range. The XPS data indicated the non-specific adsorption character of the cations and anions in the potential range from −2.00 V to 0.00 V. Thus, this region can be used for the detailed analysis of catalytic reaction mechanisms. We observed strong adsorption from 0.00 V to 1.80 V, and at E > 1.80 V, very strong adsorption of the N4111(TFSI) at the mmp-C(Mo2C) took place. At more negative potentials than −2.00 V, the formation of a surface layer containing both N4111+ cations and TFSI− anions was established with the formation of various gaseous compounds. Collected data indicated the electrochemical instability of the N4111+ cation at E < −2.00 V

    Carbide-Derived Carbons: WAXS and Raman Spectra for Detailed Structural Analysis

    No full text
    Quick characterization methods to determine the structure of carbon materials are sought after for a wide array of technical applications. In this study we present the combined analysis of the structure of carbide-derived carbons (CDCs) with Raman spectroscopy and wide-angle X-ray scattering (WAXS) methods. We present the optimal deconvolution method to be used for the detailed analysis of Raman spectroscopy data of CDCs and comparison to corresponding WAXS results is made. For a broad set of CDCs both WAXS and Raman spectroscopy data showed that the average graphene layer extent increases with synthesis temperature of CDC, while the coherent domain lengths obtained from Raman spectroscopy higher by an average of 4.4 nm. In addition, the presence of correlations between the parameters (D-band width and the parameter A∑D/A∑G) from Raman spectroscopy and the synthesis temperature are established. Based on the WAXS and Raman spectra data analysis the strong influence of the precursor carbide structure on the graphitization pathway is shown
    corecore