8,078 research outputs found

    Pulmonary giant cells and their significance for the diagnosis of asphyxiation

    Get PDF
    This study was performed to prove whether the detection of polynuclear giant cells in lungs is useful for the diagnosis of asphyxiation due to throttling or strangulation. Therefore, lung specimens of 54 individuals with different natural and unnatural causes of death were investigated. In most lungs examined numerous alveolar macrophages with 1-2 nuclei were found. Polynuclear giant cells, which were arbitrarily defined as alveolar macrophages containing 3 or more nuclei, were observed in all groups investigated except in the cases of hypoxia due to covering the head with plastic bags. Apparent differences between the other groups in particular an increased number in cases of throttling or strangulation, could not be observed. Immunohistochemical investigations confirmed the hypothesis that the observed polynuclear giant cells were derived from alveolar macrophages. The immunohistochemical analysis of the proliferation marker antigen Ki 67 revealed no positive reaction in the nuclei of polynuclear giant cells indicating that these cells had not developed shortly before death by endomitosis as an adaptative change following reduction in oxygen supply. The results provide evidence that the detection of pulmonary polynuclear giant cells cannot be used as a practical indicator for death by asphyxiation due to throttling or strangulation

    Fuzzy Sphere Dynamics and Non-Abelian DBI in Curved Backgrounds

    Full text link
    We consider the non-Abelian action for the dynamics of NDpN Dp'-branes in the background of MDpM Dp-branes, which parameterises a fuzzy sphere using the SU(2) algebra. We find that the curved background leads to collapsing solutions for the fuzzy sphere except when we have D0D0 branes in the D6D6 background, which is a realisation of the gravitational Myers effect. Furthermore we find the equations of motion in the Abelian and non-Abelian theories are identical in the large NN limit. By picking a specific ansatz we find that we can incorporate angular momentum into the action, although this imposes restriction upon the dimensionality of the background solutions. We also consider the case of non-Abelian non-BPS branes, and examine the resultant dynamics using world-volume symmetry transformations. We find that the fuzzy sphere always collapses but the solutions are sensitive to the combination of the two conserved charges and we can find expanding solutions with turning points. We go on to consider the coincident NSNS5-brane background, and again construct the non-Abelian theory for both BPS and non-BPS branes. In the latter case we must use symmetry arguments to find additional conserved charges on the world-volumes to solve the equations of motion. We find that in the Non-BPS case there is a turning solution for specific regions of the tachyon and radion fields. Finally we investigate the more general dynamics of fuzzy S2k\mathbb{S}^{2k} in the DpDp-brane background, and find collapsing solutions in all cases.Comment: 49 pages, 3 figures, Latex; Version to appear in JHE

    Feasibility of overnight electrical stimulation-induced muscle activation in people with a spinal cord injury:A Pilot study

    Get PDF
    Contains fulltext : 218680.pdf (Publisher’s version ) (Closed access)Study Design: We investigated whether overnight ES is a feasible method to activate gluteal, quadriceps, and hamstrings muscles in a two-week experiment. Electrical stimulation (ES) induced muscle contractions have proven positive effects on risk factors for developing pressure ulcers in people with a spinal cord injury (SCI). Therefore prolonged overnight ES-induced muscle activation is interesting, but has never been studied. Objective: To study feasibility of ES-induced leg muscle activation. In eight participants with motor complete SCI gluteal, hamstrings and quadriceps muscles were activated with a 2-weeks overnight stimulation protocol, 8 h per night, using specially developed ES-shorts. Setting: The Netherlands. Methods: Muscle fatigue was determined with a muscle contraction sensor. Questionnaires on sleep quality (SQ) and the ES-shorts usability were taken. Results: After 8 h of activation muscles still contracted, although fatigue occurred, and mean contraction size was lower at the end of a cycle (p = 0.03). SQ (0-100) after intervention was 75, and 66 after 4 weeks without overnight ES (p = 0.04) indicating ES improves sleep quality. The usability of the ES-shorts was good. Conclusions: This study shows that overnight ES-induced muscle activation using ES-shorts in SCI is a new, feasible method that does not interfere with sleep. The nightly use of the ES-shorts might be considered as an important part of the daily routine in SCI

    Composite vertices that lead to soft form factors

    Get PDF
    The momentum-space cut-off parameter Λ\Lambda of hadronic vertex functions is studied in this paper. We use a composite model where we can measure the contributions of intermediate particle propagations to Λ\Lambda. We show that in many cases a composite vertex function has a much smaller cut-off than its constituent vertices, particularly when light constituents such as pions are present in the intermediate state. This suggests that composite meson-baryon-baryon vertex functions are rather soft, i.e., they have \Lambda considerably less than 1 GeV. We discuss the origin of this softening of form factors as well as the implications of our findings on the modeling of nuclear reactions.Comment: REVTex, 19 pages, 5 figs(to be provided on request

    Effects of Hybrid Cycle and Handcycle Exercise on Cardiovascular Disease Risk Factors in People with Spinal Cord Injury:A Randomized Controlled Trial

    Get PDF
    Objective: To examine the effects of a 16-week exercise programme, using either a hybrid cycle or a handcycle, on cardiovascular disease risk factors in people with spinal cord injury.Participants: Nineteen individuals with spinal cord injury &gt;= 8 years.Design: Multicentre randomized controlled trial. Both the hybrid cycle group (n = 9) and the handcycle group (n = 10) trained twice a week for 16 weeks on the specific cycle. Outcome measures obtained pre and post the programme were: metabolic syndrome components (waist circumference, systolic and diastolic blood pressure, high-density lipoprotein cholesterol, triglycerides and insulin resistance), inflammatory status (C-reactive protein (CRP), interleukin (1)-6 and -10), and visceral adiposity (trunk and android fat).Results: For all outcome measures, there were no significant differences over time between the 2 training groups. Overall significant reductions were found for waist circumference (p = 0.001), diastolic blood pressure (p = 0.03), insulin resistance (p = 0.006), CRP (p = 0.05), IL-6 (p = 0.04), IL-6/IL-10 ratio (p = 0.03), and trunk (p = 0.04) and android (p = 0.02) fat percentage. No significant main effects for time were observed for systolic blood pressure, triglycerides, high-density lipoprotein cholesterol, IL-10, and trunk and android fat mass.Conclusion: The 16-week exercise programme, using either a hybrid cycle or a handcycle, found similar beneficial effects on metabolic syndrome components, inflammatory status and visceral adiposity, indicating that there were no additional benefits of functional electrical stimulation-induced leg exercise over handcycle exercise alone.</p

    Natural Gas Compressibility Factor Measurement and Evaluation for High Pressure High Temperature Gas Reservoirs

    Get PDF
    The Natural gas compressibility factor is an important reservoir fluid property used in reservoir engineering computations either directly or indirectly in material balance calculations, well test analysis, gas reserve estimates, gas flow in lines and in numerical reservoir simulations. Existing gas compressibility factor correlations were derived using measured data at low to moderate pressures(less than 8, 000 psia) and temperatures (less than 212oF), and an extrapolation to High Pressure High temperature (HPHT) is doubtful. The need to understand and predict gas compressibility factor at HPHT has become increasingly important as exploration and production has moved to ever deeper formations where HPHT conditions are to be encountered. This paper presents laboratory measurement of gas compressibility factors at HPHT natural gas systems and the evaluation of some selected gas compressibility factors correlations. Samples of gas mixtures were collected from the high pressure gas reservoirs from the Niger Delta region of Nigeria. Vinci PVT Cell was used to measure the gas compressibility factors for a pressures ranging from 6,000 to 14,000 psia and temperatures at 270oF and 370oF. The new laboratory data was compared to some of the gas compressibility factor correlations/ models used in the petroleum industry. Results showed that majority of the correlations studied overestimated the gas compressibility factor at HPHT. Mean relative and absolute error analysis were done based on the temperature difference; it was found that the total mean relative and absolute errors for the 370o F cases are higher than those for 270oF. Among all the correlations assessed, Hall and Yarborough equation performed better than other existing correlations with a mean absolute error of 3.545 and relative error of -2.668 at 270oF. At 370oF, Beggs and Brills correlation predicted better than other correlations studied with a mean relative error of -4.77 and absolute error of 7.18

    Effect of long-term physical activity and acute exercise on markers of systemic inflammation in persons with chronic spinal cord injury: a systematic review

    Get PDF
    Objective: To evaluate the effect of long-term physical activity (PA) and acute exercise on markers of systemic inflammation in persons with chronic spinal cord injury (SCI)

    Fake supersymmetry versus Hamilton-Jacobi

    Get PDF
    We explain when the first-order Hamilton-Jacobi equations for black holes (and domain walls) in (gauged) supergravity, reduce to the usual first-order equations derived from a fake superpotential. This turns out to be equivalent to the vanishing of a newly found constant of motion and we illustrate this with various examples. We show that fake supersymmetry is a necessary condition for having physically sensible extremal black hole solutions. We furthermore observe that small black holes become scaling solutions near the horizon. When combined with fake supersymmetry, this leads to a precise extension of the attractor mechanism to small black holes: The attractor solution is such that the scalars move on specific curves, determined by the black hole charges, that are purely geodesic, although there is a non-zero potential.Comment: 20 pages, v2: Typos corrected, references adde

    The Most Massive Ultra-Compact Dwarf Galaxy in the Virgo Cluster

    Full text link
    We report on the properties of the most massive ultra-compact dwarf galaxy (UCD) in the nearby Virgo Cluster of galaxies using imaging from the Next Generation Virgo Cluster Survey (NGVS) and spectroscopy from Keck/DEIMOS. This object (M59-UCD3) appears to be associated with the massive Virgo galaxy M59 (NGC 4621), has an integrated velocity dispersion of 78 km/s, a dynamical mass of 3.7×108M3.7\times10^8 M_\odot, and an effective radius (ReR_e) of 25 pc. With an effective surface mass density of 9.4×1010M/kpc29.4\times10^{10} M_\odot/kpc^2, it is the densest galaxy in the local Universe discovered to date, surpassing the density of the luminous Virgo UCD, M60-UCD1. M59-UCD3 has a total luminosity of Mg=14.2M_{g'}=-14.2 mag, and a spectral energy distribution consistent with an old (14 Gyr) stellar population with [Fe/H]=0.0 and [α\alpha/Fe]=+0.2. We also examine deep imaging around M59 and find a broad low surface brightness stream pointing towards M59-UCD3, which may represent a tidal remnant of the UCD progenitor. This UCD, along with similar objects like M60-UCD1 and M59cO, likely represents an extreme population of tidally stripped galaxies more akin to larger and more massive compact early-type galaxies than to nuclear star clusters in present-day dwarf galaxies.Comment: 6 pages, 4 figures, 1 table, accepted for publication in ApJ Letter

    Testing the Meson Cloud Model in Inclusive Meson Production

    Get PDF
    We have applied the Meson Cloud Model to calculate inclusive momentum spectra of pions and kaons produced in high energy proton-proton and proton-nucleus collisions. For the first time these data are used to constrain the cloud cut-off parameters. We show that it is possible to obtain a reasonable description of data, especially the large xFx_F (xF0.2x_F \geq 0.2) part of the spectrum and at the same time describe (partially) the E866 data on dˉuˉ\bar d - \bar u and dˉ/uˉ\bar d / \bar u. We also discuss the relative strength of the πN\pi N and πΔ\pi \Delta vertices. We find out that the corresponding cut-off parameters should be both soft and should not differ by more than 200 MeV from each other. An additional source (other than the meson cloud) of sea antiquark asymmetry, seems to be necessary to completely explain the data. A first extension of the MCM to proton nucleus collisions is discussed.Comment: 14 pages, Latex, 6 ps figures. Submitted to Phys. Rev.
    corecore