28 research outputs found
Recommended from our members
Fusion of MALDI Spectrometric Imaging and Raman Spectroscopic Data for the Analysis of Biological Samples
Despite of a large number of imaging techniques for the characterization of biological samples, no universal one has been reported yet. In this work, a data fusion approach was investigated for combining Raman spectroscopic data with matrix-assisted laser desorption/ionization (MALDI) mass spectrometric data. It betters the image analysis of biological samples because Raman and MALDI information can be complementary to each other. While MALDI spectrometry yields detailed information regarding the lipid content, Raman spectroscopy provides valuable information about the overall chemical composition of the sample. The combination of Raman spectroscopic and MALDI spectrometric imaging data helps distinguishing different regions within the sample with a higher precision than would be possible by using either technique. We demonstrate that a data weighting step within the data fusion is necessary to reveal additional spectral features. The selected weighting approach was evaluated by examining the proportions of variance within the data explained by the first principal components of a principal component analysis (PCA) and visualizing the PCA results for each data type and combined data. In summary, the presented data fusion approach provides a concrete guideline on how to combine Raman spectroscopic and MALDI spectrometric imaging data for biological analysis
corr2D: Implementation of Two-Dimensional Correlation Analysis in R
In the package corr2D two-dimensional correlation analysis is implemented in R. This paper describes how two-dimensional correlation analysis is done in the package and how the mathematical equations are translated into R code. The paper features a simple tutorial with executable code for beginners, insight into the calculations done before the correlation analysis, a detailed look at the parallelization of the fast Fourier transformation based correlation analysis and a speed test of the calculation. The package corr2D offers the possibility to preprocess, correlate and postprocess spectroscopic data using exclusively the R language. Thus, corr2D is a welcome addition to the toolbox of spectroscopists and makes two-dimensional correlation analysis more accessible and transparent
Recommended from our members
Use of polymers as wavenumber calibration standards in deep-UVRR
Deep-UV resonance Raman spectroscopy (UVRR) allows the classification of bacterial species with high accuracy and is a promising tool to be developed for clinical application. For this attempt, the optimization of the wavenumber calibration is required to correct the overtime changes of the Raman setup. In the present study, different polymers were investigated as potential calibration agents. The ones with many sharp bands within the spectral range 400–1900 cm−1 were selected and used for wavenumber calibration of bacterial spectra. Classification models were built using a training cross-validation dataset that was then evaluated with an independent test dataset obtained after 4 months. Without calibration, the training cross-validation dataset provided an accuracy for differentiation above 99 % that dropped to 51.2 % after test evaluation. Applying the test evaluation with PET and Teflon calibration allowed correct assignment of all spectra of Gram-positive isolates. Calibration with PS and PEI leads to misclassifications that could be overcome with majority voting. Concerning the very closely related and similar in genome and cell biochemistry Enterobacteriaceae species, all spectra of the training cross-validation dataset were correctly classified but were misclassified in test evaluation. These results show the importance of selecting the most suitable calibration agent in the classification of bacterial species and help in the optimization of the deep-UVRR technique
Recommended from our members
Deep learning a boon for biophotonics
This review covers original articles using deep learning in the biophotonic field published in the last years. In these years deep learning, which is a subset of machine learning mostly based on artificial neural network geometries, was applied to a number of biophotonic tasks and has achieved state-of-the-art performances. Therefore, deep learning in the biophotonic field is rapidly growing and it will be utilized in the next years to obtain real-time biophotonic decision-making systems and to analyze biophotonic data in general. In this contribution, we discuss the possibilities of deep learning in the biophotonic field including image classification, segmentation, registration, pseudostaining and resolution enhancement. Additionally, we discuss the potential use of deep learning for spectroscopic data including spectral data preprocessing and spectral classification. We conclude this review by addressing the potential applications and challenges of using deep learning for biophotonic data. © 2020 The Authors. Journal of Biophotonics published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinhei
Comparison of Different Label-Free Raman Spectroscopy Approaches for the Discrimination of Clinical MRSA and MSSA Isolates
Methicillin-resistant Staphylococcus aureus (MRSA) is classified as one of the priority pathogens that threaten human health. Resistance detection with conventional microbiological methods takes several days, forcing physicians to administer empirical antimicrobial treatment that is not always appropriate. A need exists for a rapid, accurate, and cost-effective method that allows targeted antimicrobial therapy in limited time. In this pilot study, we investigate the efficacy of three different label-free Raman spectroscopic approaches to differentiate methicillin-resistant and -susceptible clinical isolates of S. aureus (MSSA). Single-cell analysis using 532 nm excitation was shown to be the most suitable approach since it captures information on the overall biochemical composition of the bacteria, predicting 87.5% of the strains correctly. UV resonance Raman microspectroscopy provided a balanced accuracy of 62.5% and was not sensitive enough in discriminating MRSA from MSSA. Excitation of 785 nm directly on the petri dish provided a balanced accuracy of 87.5%. However, the difference between the strains was derived from the dominant staphyloxanthin bands in the MRSA, a cell component not associated with the presence of methicillin resistance. This is the first step toward the development of label-free Raman spectroscopy for the discrimination of MRSA and MSSA using single-cell analysis with 532 nm excitation. IMPORTANCE Label-free Raman spectra capture the high chemical complexity of bacterial cells. Many different Raman approaches have been developed using different excitation wavelength and cell analysis methods. This study highlights the major importance of selecting the most suitable Raman approach, capable of providing spectral features that can be associated with the cell mechanism under investigation. It is shown that the approach of choice for differentiating MRSA from MSSA should be single-cell analysis with 532 nm excitation since it captures the difference in the overall biochemical composition. These results should be taken into consideration in future studies aiming for the development of label-free Raman spectroscopy as a clinical analytical tool for antimicrobial resistance determination
Recommended from our members
Comparison of hyperspectral coherent Raman scattering microscopies for biomedical applications
Raman scattering based imaging represents a very powerful optical tool for biomedical diagnostics. Different Raman signatures obtained by distinct tissue structures and disease induced changes provoke sophisticated analysis of the hyperspectral Raman datasets. While the analysis of linear Raman spectroscopic tissue data is quite established, the evaluation of hyperspectral nonlinear Raman data has not yet been evaluated in great detail. The two most common nonlinear Raman methods are CARS (coherent anti-Stokes Raman scattering) and SRS (stimulated Raman scattering) spectroscopy. Specifically the linear concentration dependence of SRS as compared to the quadratic dependence of CARS has fostered the application of SRS tissue imaging. Here, we applied spectral processing to hyperspectral SRS and CARS data for tissue characterization. We could demonstrate for the first time that similar cluster distributions can be obtained for multispectral CARS and SRS data but that clustering is based on different spectral features due to interference effects in CARS and the different concentration dependence of CARS and SRS. It is shown that a direct combination of CARS and SRS data does not improve the clustering results
Recommended from our members
Fiber-based SORS-SERDS system and chemometrics for the diagnostics and therapy monitoring of psoriasis inflammatory disease in vivo
Psoriasis is considered a widespread dermatological disease that can strongly affect the quality of life. Currently, the treatment is continued until the skin surface appears clinically healed. However, lesions appearing normal may contain modifications in deeper layers. To terminate the treatment too early can highly increase the risk of relapses. Therefore, techniques are needed for a better knowledge of the treatment process, especially to detect the lesion modifications in deeper layers. In this study, we developed a fiber-based SORS-SERDS system in combination with machine learning algorithms to non-invasively determine the treatment efficiency of psoriasis. The system was designed to acquire Raman spectra from three different depths into the skin, which provide rich information about the skin modifications in deeper layers. This way, it is expected to prevent the occurrence of relapses in case of a too short treatment. The method was verified with a study of 24 patients upon their two visits: the data is acquired at the beginning of a standard treatment (visit 1) and four months afterwards (visit 2). A mean sensitivity of ≥85% was achieved to distinguish psoriasis from normal skin at visit 1. At visit 2, where the patients were healed according to the clinical appearance, the mean sensitivity was ≈65%
Recommended from our members
Raman spectroscopy follows time-dependent changes in T lymphocytes isolated from spleen of endotoxemic mice
T lymphocytes (T cells) are highly specialized members of the adaptive immune system and hold the key to the understanding the hosts’ response toward invading pathogen or pathogen-associated molecular patterns such as LPS. In this study, noninvasive Raman spectroscopy is presented as a label-free method to follow LPS-induced changes in splenic T cells during acute and postacute inflammatory phases (1, 4, 10, and 30 d) with a special focus on CD4+ and CD8+ T cells of endotoxemic C57BL/6 mice. Raman spectral analysis reveals highest chemical differences between CD4+ and CD8+ T cells originating from the control and LPS-treated mice during acute inflammation, and the differences are visible up to 10 d after the LPS insult. In the postacute phase, CD4+ and CD8+ T cells from treated and untreated mice could not be differentiated anymore, suggesting that T cells largely regained their original status. In sum, the biological information obtained from Raman spectra agrees with immunological readouts demonstrating that Raman spectroscopy is a well-suited, label-free method for following splenic T cell activation in systemic inflammation from acute to postacute phases. The method can also be applied to directly study tissue sections as is demonstrated for spleen tissue one day after LPS insult.T lymphocytes (T cells) are highly specialized members of the adaptive immune system and hold the key to the understanding the hosts’ response toward invading pathogen or pathogen-associated molecular patterns such as LPS. In this study, noninvasive Raman spectroscopy is presented as a label-free method to follow LPS-induced changes in splenic T cells during acute and postacute inflammatory phases (1, 4, 10, and 30 d) with a special focus on CD4+ and CD8+ T cells of endotoxemic C57BL/6 mice. Raman spectral analysis reveals highest chemical differences between CD4+ and CD8+ T cells originating from the control and LPS-treated mice during acute inflammation, and the differences are visible up to 10 d after the LPS insult. In the postacute phase, CD4+ and CD8+ T cells from treated and untreated mice could not be differentiated anymore, suggesting that T cells largely regained their original status. In sum, the biological information obtained from Raman spectra agrees with immunological readouts demonstrating that Raman spectroscopy is a well-suited, label-free method for following splenic T cell activation in systemic inflammation from acute to postacute phases. The method can also be applied to directly study tissue sections as is demonstrated for spleen tissue one day after LPS insult
Recommended from our members
Pseudo-HE images derived from CARS/TPEF/SHG multimodal imaging in combination with Raman-spectroscopy as a pathological screening tool
Due to the steadily increasing number of cancer patients worldwide the early diagnosis and treatment of cancer is a major field of research. The diagnosis of cancer is mostly performed by an experienced pathologist via the visual inspection of histo-pathological stained tissue sections. To save valuable time, low quality cryosections are frequently analyzed with diagnostic accuracies that are below those of high quality embedded tissue sections. Thus, alternative means have to be found that enable for fast and accurate diagnosis as the basis of following clinical decision making