25 research outputs found

    Plasticity of seasonal xylem and phloem production of Norway spruce along an elevational gradient

    Get PDF
    CITATION: Miller, T. W. et al. 2020. Plasticity of seasonal xylem and phloem production of Norway spruce along an elevational gradient. Trees, 34:1281–1297, doi:10.1007/s00468-020-01997-6.The original publication is available at https://link.springer.comENGLISH ABSTRACT: The understanding of the seasonality of phloem production, its dependence on climatic factors and potential tradeofs with xylem cell production is still limited. This study determined key tree-ring phenological events and examined the dynamics of phloem and xylem cell production of Norway Spruce (Picea abies (L.) Karst) by sampling microcores during the growing seasons 2014 and 2015 along an elevational gradient (450 m, 750 m, 1250 m a.s.l.) in south-western Germany. The onset of phloem formation preceded xylem formation at each elevation by approximately 2 weeks, while cessation showed no clear diferences between the stands. Maximum rates of xylem and phloem cell production were observed around the summer solstice, independent of elevation. No linear pattern was found in the occurrence of phenological events along the elevational gradient. Phloem formation appeared to be less sensitive to environmental conditions since no diference was found in the number of produced sieve cells between the 2 years of study, whereas the ratio of xylem to phloem cells was signifcantly smaller in the year 2015 with summer drought. The total number of conducting, non-collapsed phloem cells did not culminate as expected at the time of the potential maximum assimilate production, but at the end of the growing season. Thus, interpretation of phloem formation should not be limited to the function of assimilate transport but should follow a more holistic view of structural–functional relationships of conductive tissues and tree physiological processes.https://link.springer.com/article/10.1007/s00468-020-01997-6Publisher's versio

    Insights into the Mechanism of Ligand Binding to Octopine Dehydrogenase from Pecten maximus by NMR and Crystallography

    Get PDF
    Octopine dehydrogenase (OcDH) from the adductor muscle of the great scallop, Pecten maximus, catalyzes the NADH dependent, reductive condensation of L-arginine and pyruvate to octopine, NAD+, and water during escape swimming and/or subsequent recovery. The structure of OcDH was recently solved and a reaction mechanism was proposed which implied an ordered binding of NADH, L-arginine and finally pyruvate. Here, the order of substrate binding as well as the underlying conformational changes were investigated by NMR confirming the model derived from the crystal structures. Furthermore, the crystal structure of the OcDH/NADH/agmatine complex was determined which suggests a key role of the side chain of L-arginine in protein cataylsis. Thus, the order of substrate binding to OcDH as well as the molecular signals involved in octopine formation can now be described in molecular detail

    Xylem Phenology and Growth Response of European Beech, Silver Fir and Scots Pine along an Elevational Gradient during the Extreme Drought Year 2018

    No full text
    Highlights: European beech (Fagus sylvatica L.) and silver fir (Abies alba Mill.) displayed parabolic elevational trends of the cessation of xylem cell differentiation phases. Xylem phenology and growth rates of Scots pine (Pinus sylvestris L.) appeared to be less influenced by the 2018 drought, whereas beech reduced growth on the lowest elevation and fir seemed negatively affected in general. Background: The year 2018 was characterized by multiple drought periods and heat waves during the growing season. Our aim was to understand species-specific responses of xylem phenology and growth to drought and how this effect was modified along an elevational gradient. Materials and Methods: We sampled microcores and increment cores along an elevational gradient in the southwestern Black Forest (SW Germany) region and analyzed xylem phenology and growth response to drought. Results: Termination of cell enlargement and lignification occurred earliest in beech and latest in pine. Beech had the highest growth rates but shortest growth durations, fir achieved moderate rates and medium durations and pine had lowest growth rates despite long growth durations. In contrast to pine, onsets of cell differentiation phases of fir and beech did not show clear linear relationships with elevation. Cessation of cell production and lignification of beech and fir followed a parabolic elevational trend and occurred earliest on low elevations, whereas pine showed no changes with elevation. Tree-ring width, generally, depended 3–4 times more on the growth rate than on growth duration. Conclusions: The possibly drought-induced early cessation of cell differentiation and considerable growth reduction of beech appeared to be most severe on the lowest elevation. In comparison, growth reductions of fir were larger and seemed independent from elevation. We found evidence, that productivity might be severely affected at lower elevations, whereas at high elevations wood production might not equally benefit during global warming

    Xylem Phenology and Growth Response of European Beech, Silver Fir and Scots Pine along an Elevational Gradient during the Extreme Drought Year 2018

    No full text
    Highlights: European beech (Fagus sylvatica L.) and silver fir (Abies alba Mill.) displayed parabolic elevational trends of the cessation of xylem cell differentiation phases. Xylem phenology and growth rates of Scots pine (Pinus sylvestris L.) appeared to be less influenced by the 2018 drought, whereas beech reduced growth on the lowest elevation and fir seemed negatively affected in general. Background: The year 2018 was characterized by multiple drought periods and heat waves during the growing season. Our aim was to understand species-specific responses of xylem phenology and growth to drought and how this effect was modified along an elevational gradient. Materials and Methods: We sampled microcores and increment cores along an elevational gradient in the southwestern Black Forest (SW Germany) region and analyzed xylem phenology and growth response to drought. Results: Termination of cell enlargement and lignification occurred earliest in beech and latest in pine. Beech had the highest growth rates but shortest growth durations, fir achieved moderate rates and medium durations and pine had lowest growth rates despite long growth durations. In contrast to pine, onsets of cell differentiation phases of fir and beech did not show clear linear relationships with elevation. Cessation of cell production and lignification of beech and fir followed a parabolic elevational trend and occurred earliest on low elevations, whereas pine showed no changes with elevation. Tree-ring width, generally, depended 3–4 times more on the growth rate than on growth duration. Conclusions: The possibly drought-induced early cessation of cell differentiation and considerable growth reduction of beech appeared to be most severe on the lowest elevation. In comparison, growth reductions of fir were larger and seemed independent from elevation. We found evidence, that productivity might be severely affected at lower elevations, whereas at high elevations wood production might not equally benefit during global warming

    Effects of Intra-Seasonal Drought on Kinetics of Tracheid Differentiation and Seasonal Growth Dynamics of Norway Spruce along an Elevational Gradient

    No full text
    Research Highlights: Our results provide novel perspectives on the effectiveness and collapse of compensatory mechanisms of tracheid development of Norway spruce during intra-seasonal drought and the environmental control of intra-annual density fluctuations. Background and Objectives: This study aimed to compare and integrate complementary methods for investigating intra-annual wood formation dynamics to gain a better understanding of the endogenous and environmental control of tree-ring development and the impact of anticipated climatic changes on forest growth and productivity. Materials and Methods: We performed an integrated analysis of xylogenesis observations, quantitative wood anatomy, and point-dendrometer measurements of Norway spruce (Picea abies (L.) Karst.) trees growing along an elevational gradient in South-western Germany during a growing season with an anomalous dry June followed by an extraordinary humid July. Results: Strong endogenous control of tree-ring formation was suggested at the highest elevation where the decreasing rates of tracheid enlargement and wall thickening during drought were effectively compensated by increased cell differentiation duration. A shift to environmental control of tree-ring formation during drought was indicated at the lowest elevation, where we detected absence of compensatory mechanisms, eventually stimulating the formation of an intra-annual density fluctuation. Transient drought stress in June also led to bimodal patterns and decreasing daily rates of stem radial displacement, radial xylem growth, and woody biomass production. Comparing xylogenesis data with dendrometer measurements showed ambivalent results and it appears that, with decreasing daily rates of radial xylem growth, the signal-to-noise ratio in dendrometer time series between growth and fluctuations of tree water status becomes increasingly detrimental. Conclusions: Our study provides new perspectives into the complex interplay between rates and durations of tracheid development during dry-wet cycles, and, thereby, contributes to an improved and mechanistic understanding of the environmental control of wood formation processes, leading to the formation of intra-annual density fluctuations in tree-rings of Norway spruce

    Effects of Intra-Seasonal Drought on Kinetics of Tracheid Differentiation and Seasonal Growth Dynamics of Norway Spruce along an Elevational Gradient

    No full text
    Research Highlights: Our results provide novel perspectives on the effectiveness and collapse of compensatory mechanisms of tracheid development of Norway spruce during intra-seasonal drought and the environmental control of intra-annual density fluctuations. Background and Objectives: This study aimed to compare and integrate complementary methods for investigating intra-annual wood formation dynamics to gain a better understanding of the endogenous and environmental control of tree-ring development and the impact of anticipated climatic changes on forest growth and productivity. Materials and Methods: We performed an integrated analysis of xylogenesis observations, quantitative wood anatomy, and point-dendrometer measurements of Norway spruce (Picea abies (L.) Karst.) trees growing along an elevational gradient in South-western Germany during a growing season with an anomalous dry June followed by an extraordinary humid July. Results: Strong endogenous control of tree-ring formation was suggested at the highest elevation where the decreasing rates of tracheid enlargement and wall thickening during drought were effectively compensated by increased cell differentiation duration. A shift to environmental control of tree-ring formation during drought was indicated at the lowest elevation, where we detected absence of compensatory mechanisms, eventually stimulating the formation of an intra-annual density fluctuation. Transient drought stress in June also led to bimodal patterns and decreasing daily rates of stem radial displacement, radial xylem growth, and woody biomass production. Comparing xylogenesis data with dendrometer measurements showed ambivalent results and it appears that, with decreasing daily rates of radial xylem growth, the signal-to-noise ratio in dendrometer time series between growth and fluctuations of tree water status becomes increasingly detrimental. Conclusions: Our study provides new perspectives into the complex interplay between rates and durations of tracheid development during dry-wet cycles, and, thereby, contributes to an improved and mechanistic understanding of the environmental control of wood formation processes, leading to the formation of intra-annual density fluctuations in tree-rings of Norway spruce
    corecore