175 research outputs found

    The Cellular DExD/H-Box RNA-Helicases UAP56 and URH49 Exhibit a CRM1-Independent Nucleocytoplasmic Shuttling Activity

    Get PDF
    Cellular DExD/H-box RNA-helicases perform essential functions during mRNA biogenesis. The closely related human proteins UAP56 and URH49 are members of this protein family and play an essential role for cellular mRNA export by recruiting the adaptor protein REF to spliced and unspliced mRNAs. In order to gain insight into their mode of action, we aimed to characterize these RNA-helicases in more detail. Here, we demonstrate that UAP56 and URH49 exhibit an intrinsic CRM1-independent nucleocytoplasmic shuttling activity. Extensive mapping studies identified distinct regions within UAP56 or URH49 required for (i) intranuclear localization (UAP56 aa81-381) and (ii) interaction with REF (UAP56 aa51-428). Moreover, the region conferring nucleocytoplasmic shuttling activity was mapped to the C-terminus of UAP56, comprising the amino acids 195-428. Interestingly, this region coincides with a domain within Uap56p of S. pombe that has been reported to be required for both Rae1p-interaction and nucleocytoplasmic shuttling. However, in contrast to this finding we report that human UAP56 shuttles independently from Rae1. In summary, our results reveal nucleocytoplasmic shuttling as a conserved feature of yeast and human UAP56, while their export receptor seems to have diverged during evolution

    Main Achievements of the Rocket Technology Flight Experiment ROTEX-T

    Get PDF
    Based on experience gathered during the hypersonic flight experiments SHEFEX-I and SHEFEX-II the German Aerospace Center (DLR) performed the extensively instrumented flight experiment ROTEX-T (ROcket Technology EXperiment-Transition). ROTEX-T was successfully launched on 19th July 2016 at 06:05 am CEST from the Esrange Space Center near Kiruna in northern Sweden. Students of the RWTH Aachen University supported the design of the project with numerical simulations. ROTEX-T was a low cost flight experiment mission without inertial measurement unit, reaction control and parachute system. The payload reached an altitude of 183 kilometers, performed a ballistic re-entry with a total flight time of approximately 446 seconds and was afterwards recovered by helicopter. An unique and modular data acquisition system with sampling rates of 20 Hz, 1 kHz, 10 kHz and 2000 kHz was developed for ROTEX-T to study also instationary aerothermal phenomena

    The Thrombopoietin Receptor Agonist Eltrombopag Inhibits Human Cytomegalovirus Replication Via Iron Chelation

    Get PDF
    The thrombopoietin receptor agonist eltrombopag was successfully used against human cytomegalovirus (HCMV)-associated thrombocytopenia refractory to immunomodulatory and antiviral drugs. These effects were ascribed to the effects of eltrombopag on megakaryocytes. Here, we tested whether eltrombopag may also exert direct antiviral effects. Therapeutic eltrombopag concentrations inhibited HCMV replication in human fibroblasts and adult mesenchymal stem cells infected with six different virus strains and drug-resistant clinical isolates. Eltrombopag also synergistically increased the anti-HCMV activity of the mainstay drug ganciclovir. Time-of-addition experiments suggested that eltrombopag interfered with HCMV replication after virus entry. Eltrombopag was effective in thrombopoietin receptor-negative cells, and the addition of Fe3+ prevented the anti-HCMV effects, indicating that it inhibits HCMV replication via iron chelation. This may be of particular interest for the treatment of cytopenias after hematopoietic stem cell transplantation, as HCMV reactivation is a major reason for transplantation failure. Since therapeutic eltrombopag concentrations are effective against drug-resistant viruses, and synergistically increase the effects of ganciclovir, eltrombopag is also a drug-repurposing candidate for the treatment of therapy-refractory HCMV disease

    In Vivo Emergence of UL56 C325Y Cytomegalovirus Resistance to Letermovir in a Patient with Acute Myeloid Leukemia after Hematopoietic Cell Transplantation

    Get PDF
    CMV associated tissue-invasive disease is associated with a considerable risk of morbidity and mortality after allogeneic hematopoietic stem cell transplantation (HSCT). Recently, the terminase inhibitor letermovir (LMV) has been approved for prophylaxis of CMV infection in HSCT. We hereby report a 60-year-old female experiencing CMV reactivation after HSCT in a CMV seronegative donor-constellation. Due to ongoing elevated CMV viral load and drug-associated myelosuppression, which prevented ganciclovir therapy, treatment was replaced by foscarnet. Due to nephrotoxicity, foscarnet was switched to LMV. The patient developed skin GvHD and prednisolone was started. Subsequently, CMV viremia worsened despite LMV therapy. Genotyping revealed the mutation C325Y of the CMV UL56 terminase being associated with high-level resistance against LMV. Prolonged uncontrolled low-level viremia due to prednisolone treatment may have favored the selection of drug-resistant CMV. Despite the excellent toxicity profile of LMV, physicians should be aware of risk factors for the emergence of resistance

    Killer cell proteases can target viral immediate-early proteins to control human cytomegalovirus infection in a noncytotoxic manner.

    Get PDF
    Human cytomegalovirus (HCMV) is the most frequent viral cause of congenital defects and can trigger devastating disease in immune-suppressed patients. Cytotoxic lymphocytes (CD8+ T cells and NK cells) control HCMV infection by releasing interferon-Ξ³ and five granzymes (GrA, GrB, GrH, GrK, GrM), which are believed to kill infected host cells through cleavage of intracellular death substrates. However, it has recently been demonstrated that the in vivo killing capacity of cytotoxic T cells is limited and multiple T cell hits are required to kill a single virus-infected cell. This raises the question whether cytotoxic lymphocytes can use granzymes to control HCMV infection in a noncytotoxic manner. Here, we demonstrate that (primary) cytotoxic lymphocytes can block HCMV dissemination independent of host cell death, and interferon-Ξ±/Ξ²/Ξ³. Prior to killing, cytotoxic lymphocytes induce the degradation of viral immediate-early (IE) proteins IE1 and IE2 in HCMV-infected cells. Intriguingly, both IE1 and/or IE2 are directly proteolyzed by all human granzymes, with GrB and GrM being most efficient. GrB and GrM cleave IE1 after Asp398 and Leu414, respectively, likely resulting in IE1 aberrant cellular localization, IE1 instability, and functional impairment of IE1 to interfere with the JAK-STAT signaling pathway. Furthermore, GrB and GrM cleave IE2 after Asp184 and Leu173, respectively, resulting in IE2 aberrant cellular localization and functional abolishment of IE2 to transactivate the HCMV UL112 early promoter. Taken together, our data indicate that cytotoxic lymphocytes can also employ noncytotoxic ways to control HCMV infection, which may be explained by granzyme-mediated targeting of indispensable viral proteins during lytic infection

    Human cytomegalovirus-induced host protein citrullination is crucial for viral replication

    Get PDF
    Citrullination is the conversion of arginine-to-citrulline by protein arginine deiminases (PADs), whose dysregulation is implicated in the pathogenesis of various types of cancers and autoimmune diseases. Consistent with the ability of human cytomegalovirus (HCMV) to induce post-translational modifications of cellular proteins to gain a survival advantage, we show that HCMV infection of primary human fibroblasts triggers PAD-mediated citrullination of several host proteins, and that this activity promotes viral fitness. Citrullinome analysis reveals significant changes in deimination levels of both cellular and viral proteins, with interferon (IFN)-inducible protein IFIT1 being among the most heavily deiminated one. As genetic depletion of IFIT1 strongly enhances HCMV growth, and in vitro IFIT1 citrullination impairs its ability to bind to 5'-ppp-RNA, we propose that viral-induced IFIT1 citrullination is a mechanism of HCMV evasion from host antiviral resistance. Overall, our findings point to a crucial role of citrullination in subverting cellular responses to viral infection
    • …
    corecore