1,706 research outputs found

    Hadron Mass Extraction from Lattice QCD

    Get PDF
    The extraction of quantities from lattice QCD calculations at realistic quark masses is of considerable importance. Whilst physical quark masses are some way off, the recent advances in the calculation of hadron masses within full QCD now invite improved extrapolation methods. We show that, provided the correct chiral behaviour of QCD is respected in the extrapolation to realistic quark masses, one can indeed obtain a fairly reliable determination of masses, the sigma commutator and the J parameter. We summarise these findings by presenting the nonanalytic behaviour of nucleon and rho masses in the standard Edinburgh plot.Comment: Talk presented by S. V. Wright at the Workshop on Lattice Hadron Physics (LHP2001), Cairns, Australia, 9-18 July 2001, 8 pages, requires espcrc2.sty (included

    In-medium kaon and antikaon properties in the quark-meson coupling model

    Full text link
    The properties of the kaon, KK, and antikaon, \kbar, in nuclear medium are studied in the quark-meson coupling (QMC) model. Employing a constituent quark-antiquark (MIT bag model) picture, their excitation energies in a nuclear medium at zero momentum are calculated within mean field approximation. The scalar, and the vector mesons are assumed to couple directly to the nonstrange quarks and antiquarks in the KK and \kbar mesons. It is demonstrated that the ρ\rho meson induces different mean field potentials for each member of the isodoublets, KK and \kbar, when they are embedded in asymmetric nuclear matter. Furthermore, it is also shown that this ρ\rho meson potential is repulsive for the KK^- meson in matter with a neutron excess, and renders KK^- condensation less likely to occur.Comment: Latex, 11 pages, 4 Postscript figures, a few typos which can be important for an interpretation (but not reflected in the results) are corrected, as published in (E) Phys. Lett. B 436 (1998) 45

    Lattice QCD Calculations of the Sigma Commutator

    Full text link
    As a direct source of information on chiral symmetry breaking within QCD, the sigma commutator is of considerable importance. With recent advances in the calculation of hadron masses within full QCD it is of interest to see whether the sigma commutator can be calculated directly from the dependence of the nucleon mass on the input quark mass. We show that provided the correct chiral behaviour of QCD is respected in the extrapolation to realistic quark masses one can indeed obtain a fairly reliable determination of the sigma commutator using present lattice data. Within two-flavour, dynamical-fermion QCD the value obtained lies in the range 45 to 55 MeV.Comment: 7 pages, 2 figure

    Electrodeposition from a Graphene Bath: A Sustainable Copper Composite Alloy in a Graphene Matrix

    Get PDF
    The leaching effect of metals has led to the introduction of government regulations for the safety of the environment and humans. This has led to the search for new alloys with long-lasting sustainability. Herein, we wish to report a new brass alloy containing carbon with a remarkable sustainability produced by electrodeposition from a graphene quantum dots bath. The electrochemical measurements were carried out using cyclic voltammetry, potentiodynamic analysis, and Tafel measurements, and the deposits were characterized by X-ray fluorescence spectroscopy (XRF), Raman imaging, X-ray diffraction (XRD), atomic force microscopy (AFM), and scanning electron microscopy (SEM) to understand the surface morphology and elemental compositions. The current–time transients in the potential-step electrolysis were used to investigate the nucleation and growth mechanism. The smooth and compact deposit obtained at −0.60 V showed a composition of Cu = 24.33 wt %; Zn = 0.089 wt %; and C = 75.57 wt %. The SEM and energy dispersion X-ray analysis revealed a surface morphology with a uniform distribution of the particles and the presence of Cu, Zn, and C. The corrosion density of the material is very much lower than that of conventional brass, suggesting a higher sustainabilit

    Two level anti-crossings high up in the single-particle energy spectrum of a quantum dot

    Full text link
    We study the evolution with magnetic field of the single-particle energy levels high up in the energy spectrum of one dot as probed by the ground state of the adjacent dot in a weakly coupled vertical quantum dot molecule. We find that the observed spectrum is generally well accounted for by the calculated spectrum for a two-dimensional elliptical parabolic confining potential, except in several regions where two or more single-particle levels approach each other. We focus on two two-level crossing regions which show unexpected anti-crossing behavior and contrasting current dependences. Within a simple coherent level mixing picture, we can model the current carried through the coupled states of the probed dot provided the intrinsic variation with magnetic field of the current through the states (as if they were uncoupled) is accounted for by an appropriate interpolation scheme.Comment: 4 pages, 4 figures, accepted for publication in Physica E in MSS 13 conference proceeding

    Seabirds of the Chukotka Peninsula, Russia

    Get PDF
    We conducted seabird surveys along the entire coast of the Chukotka Peninsula (northwestern Siberia, Russia) from 1983 to 1991. We present the first comprehensive descriptions of the distribution and size of Chukotkan seabird colonies. Thirteen species of seabirds were recorded breeding on the peninsula, with an additional 13 migrant or vagrant species. Our estimate that at least 3 300 000 seabirds breed on the Chukotka Peninsula demonstrates the importance of this region to arctic seabird populations. Colony size and species composition may be determined by availability of adequate breeding sites, access to foraging areas, and variable ice conditions.De 1983 à 1991, on a effectué des relevés d'oiseaux marins tout le long du rivage de la péninsule de Tchoukotka (nord-ouest de la Sibérie, en Russie). On présente les premières descriptions exhaustives de la distribution et de la taille des colonies d'oiseaux marins de la Tchoukotka. On a relevé 13 espèces d'oiseaux marins nichant sur la péninsule, et, en plus, 13 espèces d'oiseaux en migration ou errants. Notre estimation d'une population nicheuse d'au moins 3 300 000 oiseaux marins dans la péninsule de Tchoukotka illustre l'importance de la région pour les populations d'oiseaux marins de l'Arctique. La taille des colonies et la composition des espèces pourraient être déterminées par la disponibilité de sites adéquats pour les nids, l'accès à des zones d'alimentation, et la variabilité des conditions de la glace

    Magnetically Controllable Polymer Nanotubes from a Cyclized Crosslinker for Site-Specific Delivery of Doxorubicin

    Get PDF
    Externally controlled site specific drug delivery could potentially provide a means of reducing drug related side effects whilst maintaining, or perhaps increasing therapeutic efficiency. The aim of this work was to develop a nanoscale drug carrier, which could be loaded with an anti-cancer drug and be directed by an external magnetic field. Using a single, commercially available monomer and a simple one-pot reaction process, a polymer was synthesized and crosslinked within the pores of an anodized aluminum oxide template. These polymer nanotubes (PNT) could be functionalized with iron oxide nanoparticles for magnetic manipulation, without affecting the large internal pore, or inherent low toxicity. Using an external magnetic field the nanotubes could be regionally concentrated, leaving areas devoid of nanotubes. Lastly, doxorubicin could be loaded to the PNTs, causing increased toxicity towards neuroblastoma cells, rendering a platform technology now ready for adaptation with different nanoparticles, degradable pre-polymers and various therapeutics

    Two-species percolation and Scaling theory of the metal-insulator transition in two dimensions

    Full text link
    Recently, a simple non-interacting-electron model, combining local quantum tunneling via quantum point contacts and global classical percolation, has been introduced in order to describe the observed ``metal-insulator transition'' in two dimensions [1]. Here, based upon that model, a two-species-percolation scaling theory is introduced and compared to the experimental data. The two species in this model are, on one hand, the ``metallic'' point contacts, whose critical energy lies below the Fermi energy, and on the other hand, the insulating quantum point contacts. It is shown that many features of the experiments, such as the exponential dependence of the resistance on temperature on the metallic side, the linear dependence of the exponent on density, the e2/he^2/h scale of the critical resistance, the quenching of the metallic phase by a parallel magnetic field and the non-monotonic dependence of the critical density on a perpendicular magnetic field, can be naturally explained by the model. Moreover, details such as the nonmonotonic dependence of the resistance on temperature or the inflection point of the resistance vs. parallel magnetic are also a natural consequence of the theory. The calculated parallel field dependence of the critical density agrees excellently with experiments, and is used to deduce an experimental value of the confining energy in the vertical direction. It is also shown that the resistance on the ``metallic'' side can decrease with decreasing temperature by an arbitrary factor in the degenerate regime (TEFT\lesssim E_F).Comment: 8 pages, 8 figure

    Spatially Averaged Quantum Inequalities Do Not Exist in Four-Dimensional Spacetime

    Get PDF
    We construct a particular class of quantum states for a massless, minimally coupled free scalar field which are of the form of a superposition of the vacuum and multi-mode two-particle states. These states can exhibit local negative energy densities. Furthermore, they can produce an arbitrarily large amount of negative energy in a given region of space at a fixed time. This class of states thus provides an explicit counterexample to the existence of a spatially averaged quantum inequality in four-dimensional spacetime.Comment: 13 pages, 1 figure, minor corrections and added comment

    Searching for the Slater Transition in the Pyrochlore Cd2_{2}Os2_{2}O7_{7} with Infrared Spectroscopy

    Full text link
    Infrared reflectance measurements were made on the single crystal pyrochlore Cd2_{2}Os2_{2}O7_{7} in order to examine the transformations of the electronic structure and crystal lattice across the boundary of the metal insulator transition at TMIT=226KT_{MIT}=226K. All predicted IR active phonons are observed in the conductivity over all temperatures and the oscillator strength is found to be temperature independent. These results indicate that charge ordering plays only a minor role in the MIT and that the transition is strictly electronic in nature. The conductivity shows the clear opening of a gap with 2Δ=5.2kBTMIT2\Delta=5.2k_{B}T_{MIT}. The gap opens continuously, with a temperature dependence similar to that of BCS superconductors, and the gap edge having a distinct σ(ω)ω1/2\sigma(\omega)\thicksim\omega^{1/2} dependence. All of these observables support the suggestion of a Slater transition in Cd2_{2}% Os2_{2}O7_{7}.Comment: 4 pages, 4 figure
    corecore