13 research outputs found

    Immunogenicity of prostate cancer is augmented by BET bromodomain inhibition

    Full text link
    Abstract Background Prostate cancer responds poorly to current immunotherapies. Epigenetic therapies such as BET Bromodomain inhibition can change the transcriptome of tumor cells, possibly making them more immunogenic and thus susceptible to immune targeting. Methods We characterized the effects of BET bromodomain inhibition using JQ1 on PD-L1 and HLA-ABC expression in two human prostate cell lines, DU145 and PC3. RNA-Seq was performed to assess changes on a genome-wide level. A cytotoxic T cell killing assay was performed in MC38-OVA cells treated with JQ1 to demonstrate increased immunogenicity. In vivo experiments in the Myc-Cap model were conducted to show the effects of JQ1 administration in concert with anti-CTLA-4 checkpoint blockade. Results Here, we show that targeting BET bromodomains using the small molecule inhibitor JQ1 decreased PD-L1 expression and mitigated tumor progression in prostate cancer models. Mechanistically, BET bromodomain inhibition increased MHC I expression and increased the immunogenicity of tumor cells. Transcriptional profiling showed that BET bromodomain inhibition regulates distinct networks of antigen processing and immune checkpoint molecules. In murine models, treatment with JQ1 was additive with anti-CTLA-4 immunotherapy, resulting in an increased CD8/Treg ratio. Conclusions BET Bromodomain inhibition can mediate changes in expression at a genome wide level in prostate cancer cells, resulting in an increased susceptibility to CD8 T cell targeting. These data suggest that combining BET bromodomain inhibition with immune checkpoint blockade may have clinical activity in prostate cancer patients.https://deepblue.lib.umich.edu/bitstream/2027.42/152251/1/40425_2019_Article_758.pd

    Cancer immunology and canine malignant melanoma: A comparative review

    Get PDF
    Oral canine malignant melanoma (CMM) is a spontaneously occurring aggressive tumour with relatively few medical treatment options, which provides a suitable model for the disease in humans. Historically, multiple immunotherapeutic strategies aimed at provoking both innate and adaptive anti-tumour immune responses have been published with varying levels of activity against CMM. Recently, a plasmid DNA vaccine expressing human tyrosinase has been licensed for the adjunct treatment of oral CMM. This article reviews the immunological similarities between CMM and the human counterpart; mechanisms by which tumours evade the immune system; reasons why melanoma is an attractive target for immunotherapy; the premise of whole cell, dendritic cell (DC), viral and DNA vaccination strategies alongside preliminary clinical results in dogs. Current “gold standard” treatments for advanced human malignant melanoma are evolving quickly with remarkable results being achieved following the introduction of immune checkpoint blockade and adoptively transferred cell therapies. The rapidly expanding field of cancer immunology and immunotherapeutics means that rational targeting of this disease in both species should enhance treatment outcomes in veterinary and human clinics
    corecore