634 research outputs found

    Long-distance Propagation of 162 MHz Shipping Information Links Associated with Sporadic E

    Get PDF
    This is a study of anomalous long-distance (\u3e1000 km) radio propagation that was identified in United States Coast Guard monitors of automatic identification system (AIS) shipping transmissions at 162 MHz. Our results indicate this long-distance propagation is caused by dense sporadic E layers in the daytime ionosphere, which were observed by nearby ionosondes at the same time. This finding is surprising because it indicates these sporadic E layers may be far more dense than previously thought

    The influence of particle surface roughness on elastic stiffness and dynamic response

    Get PDF
    Discrete-element method (DEM) simulations of planar wave propagation are used to examine the effect of particle surface roughness on the stiffness and dynamic response of granular materials. A new contact model that considers particle surface roughness is implemented in the DEM simulations. Face-centred cubic lattice packings and random configurations are used; uniform spheres are considered in both cases to isolate fabric and contact model effects from inertia effects. For the range of values considered here surface roughness caused a significant reduction in stiffness, particularly at lower confining stresses. The simulations confirm that surface roughness effects can at least partially explain the value of the exponent in the relationship between stiffness and mean confining stress for an assembly of spherical particles. Frequency domain analyses showed that the maximum frequency transmitted through the sample is reduced when surface roughness is considered. The assumption of homogeneity of stress and contacts in analytical micromechanical models is shown to lead to an overestimation of stiffness

    The effects of age bias on neural correlates of successful and unsuccessful response inhibition in younger and older adults.

    Get PDF
    Facilitating communication between generations has become increasingly important. However, individuals often demonstrate a preference for their own age group, which can impact social interactions, and such bias in young adults even extends to inhibitory control. To assess whether older adults also experience this phenomenon, a group of younger and older adults completed a Go/NoGo task incorporating young and old faces, while undergoing functional magnetic resonance imaging. Within the networks subserving successful and unsuccessful response inhibition, patterns of activity demonstrated distinct neural age bias effects in each age group. During successful inhibition, the older adult group demonstrated significantly increased activity to other-age faces, whereas unsuccessful inhibition in the younger group produced significantly enhanced activity to other-age faces. Consequently, the findings of the study confirm that neural responses to successful and unsuccessful inhibition can be contingent on the stimulus-specific attribute of age in both younger and older adults. These findings have important implications in regard to minimizing the emergence of negative consequences, such as ageism, as a result of related implicit biases

    Paleo-Hydrothermal Predecessor to Perennial Spring Activity in Thick Permafrost in the Canadian High Arctic, and Its Relation to Deep Salt Structures: Expedition Fiord, Axel Heiberg Island, Nunavut

    Get PDF
    Published versionIt is surprising to encounter active saline spring activity at a constant 6° C temperature year-round not far away from the North Pole, at latitude 79° 24′N, where the permafrost is ca. 600 m thick and average annual temperature is -15° C. These perennial springs in Expedition Fiord, Queen Elizabeth Islands, Canadian Arctic Archipelago, had previously been explained as a recent, periglacial process. However, the discovery near White Glacier (79° 26.66′N; 90° 42.20′W; 350 m.a.s.l.) of a network of veins of hydrothermal origin with a similar mineralogy to travertine precipitates formed by the springs suggests that their fluids have much deeper circulation and are related to evaporite structures (salt diapirs) that underlie the area. The relatively high minimum trapping temperature of the fluid inclusions (avg. ~200 ± 45° C, 1σ) in carbonate and quartz in the vein array, and in quartz veins west of the site, explains a local thermal anomaly detected through low-temperature thermochronology. This paper reviews and updates descriptive features of the perennial springs in Expedition Fiord and compares their mineralogy, geochemistry, and geology to the vein array by White Glacier, which is interpreted as a hydrothermal predecessor of the springs. The perennial springs in Axel Heiberg Island are known for half a century and have been extensively described in the literature. Discharging spring waters are hypersaline (1-4 molal NaCl; ~5 to 19 wt% NaCl) and precipitate Fe-sulfides, sulfates, carbonates, and halides with acicular and banded textures representing discharge pulsations. At several sites, waters and sediments by spring outlets host microbial communities that are supported by carbon- and energy-rich reduced substrates including sulfur and methane. They have been studied as possible analogs for life-supporting environments in Mars. The vein array at White Glacier consists of steep to subhorizontal veins, mineralized fractures, and breccias within a gossan area of ca. 350 × 50 m. The host rock is altered diabase and a chaotic matrix-supported breccia composed of limestone, sandstone, and anhydrite-gypsum. Mineralization consists of brown calcite (pseudomorph after aragonite) in radial aggregates as linings of fractures and cavities, with transparent, sparry calcite and quartz at the centre of larger cavities. Abundant sulfides pyrite and marcasite and minor chalcopyrite, sphalerite, and galena occur in masses and veins, much like in base metal deposits known as Mississippi Valley Type; their weathering is responsible for brown Fe oxides forming a gossan. Epidote and chlorite rim veins where the host rock is Fe- and Mg-rich diabase. The banded carbonate textures with organic matter and sulfides are reminiscent of textures observed in mineral precipitates forming in the active springs at Colour Peak Diapir. Very small fluid inclusions (5-10 μm) in two generations of vein calcite (hexagonal, early brown calcite we denominate “cal1” lining vein walls; white-orange sparry calcite “cal2” infilling veins) have bulk salinities that transition between an early, high-salinity end-member brine (up to ~20 wt% NaCl equivalent) to a later, low-salinity end-member fluid (nearly pure water) and show large fluctuations in salinity with time. Inclusions that occupy secondary planes and also growth zones in the later calcite infilling (deemed primary) have Th ranging from 100° C to 300° C (n = 120, average~200° C; independent of salinity), 2 orders of magnitude higher than average discharging water temperatures of 6° C at Colour Peak Diapir. Carbon isotope composition (δ13CVPDB) of the White Glacier vein array carbonates ranges from approximately -20 to -30‰, like carbonates formed by the degradation of petroleum, whereas carbonates at Colour Peak Diapir springs have a value of -10‰. Oxygen isotope composition (δ18OVSMOW) of vein carbonates ranges from -0.3‰ to +3.5‰, compatible with a coeval fluid at 250° C with a composition from -3.5‰ to -7.0‰. These data are consistent with carbonates having precipitated from mixtures of heated formational waters and high-latitude meteoric waters. In contrast, the δ18OVSMOW value for carbonates at Colour Peak Diapir springs is +10‰, derived from high-latitude meteoric waters at 6° C. The sulfur isotope (δ34SVCDT) composition of Fe-sulfides at the perennial springs is +19.2‰, similar to the δ34SVCDT of Carboniferous-age sulfate of the diapirs and consistent with lowtemperature microbial reduction of finite (closed-system) sulfate. The δ34SVCDT values of Fe-sulfides in the vein array range from -2.7‰ to +16.4‰, possibly reflecting higher formation temperatures involving reduction of sulfate by organics. We suggest that the similar setting, mineralogical compositions, and textures between the hydrothermal vein array and the active Colour Peak Diapir springs imply a kinship. We suggest that overpressured basinal fluids expelled from the sedimentary package and deforming salt bodies at depth during regional compressional tectonic deformation ca. 50 million years ago (Eocene) during what is known as the Eurekan Orogeny created (by hydrofracturing) the vein array at White Glacier (and probably other similar ones), and the network of conduits created continued to be a pathway around salt bodies for deeply circulating fluids to this day. Fluid inclusion data suggest that the ancient conduit system was at one point too hot to support life but may have been since colonized by microorganisms as the system cooled. Thermochronology data suggest that the hydrologic system cooled to temperatures possibly sustaining life about 10 million years ago, making it since then a viable analogue environment for the establishment of microbial life in similar situations on other planets

    The effects of age-bias on neural correlates of successful and unsuccessful response inhibition

    Get PDF
    Response inhibition is important for adherence to social norms, especially when norms conflict with biases based on one’s social identity. While previous studies have shown that in-group bias generally modulates neural activity related to stimulus appraisal, it is unclear whether and how an in-group bias based on age affects neural information processing during response inhibition. To assess this potential influence, young adults completed a Go/NoGo task incorporating younger face (in-group) and older face (out-group) stimuli while undergoing functional magnetic resonance imaging (fMRI). Our results replicated previous findings by demonstrating higher accuracy in successful Go compared to NoGo trials, as well as the engagement of nodes of the response inhibition network during successful response inhibition, and brain regions comprising the salience network during unsuccessful response inhibition. Importantly, despite a lack of behavioural differences, our results showed that younger and older face stimuli modulated activity in the response inhibition and salience networks during successful and unsuccessful inhibition, respectively. Interestingly, these effects were not uniform across networks. During successful response inhibition, in-group stimuli increased activity in medial prefrontal cortex and temporo-parietal junction, whereas out-group stimuli more strongly engaged pre-supplemental motor area. During unsuccessful response inhibition, in-group stimuli increased activity in posterior insula, whereas out-group stimuli more strongly engaged angular gyrus and intraparietal sulcus. Consequently, the results infer the presence of an age-bias effect in the context of inhibitory control, which has substantial implications for future experimental design and may also provide the means of investigating the neural correlates of implicit beliefs that contribute to ageis

    The Holy Grail: A road map for unlocking the climate record stored within Mars' polar layered deposits

    Get PDF
    In its polar layered deposits (PLD), Mars possesses a record of its recent climate, analogous to terrestrial ice sheets containing climate records on Earth. Each PLD is greater than 2 ​km thick and contains thousands of layers, each containing information on the climatic and atmospheric state during its deposition, creating a climate archive. With detailed measurements of layer composition, it may be possible to extract age, accumulation rates, atmospheric conditions, and surface activity at the time of deposition, among other important parameters; gaining the information would allow us to “read” the climate record. Because Mars has fewer complicating factors than Earth (e.g. oceans, biology, and human-modified climate), the planet offers a unique opportunity to study the history of a terrestrial planet’s climate, which in turn can teach us about our own planet and the thousands of terrestrial exoplanets waiting to be discovered. During a two-part workshop, the Keck Institute for Space Studies (KISS) hosted 38 Mars scientists and engineers who focused on determining the measurements needed to extract the climate record contained in the PLD. The group converged on four fundamental questions that must be answered with the goal of interpreting the climate record and finding its history based on the climate drivers. The group then proposed numerous measurements in order to answer these questions and detailed a sequence of missions and architecture to complete the measurements. In all, several missions are required, including an orbiter that can characterize the present climate and volatile reservoirs; a static reconnaissance lander capable of characterizing near surface atmospheric processes, annual accumulation, surface properties, and layer formation mechanism in the upper 50 ​cm of the PLD; a network of SmallSat landers focused on meteorology for ground truth of the low-altitude orbiter data; and finally, a second landed platform to access ~500 ​m of layers to measure layer variability through time. This mission architecture, with two landers, would meet the science goals and is designed to save costs compared to a single very capable landed mission. The rationale for this plan is presented below. In this paper we discuss numerous aspects, including our motivation, background of polar science, the climate science that drives polar layer formation, modeling of the atmosphere and climate to create hypotheses for what the layers mean, and terrestrial analogs to climatological studies. Finally, we present a list of measurements and missions required to answer the four major questions and read the climate record. 1. What are present and past fluxes of volatiles, dust, and other materials into and out of the polar regions? 2. How do orbital forcing and exchange with other reservoirs affect those fluxes? 3. What chemical and physical processes form and modify layers? 4. What is the timespan, completeness, and temporal resolution of the climate history recorded in the PLD

    Intervention planning and modification of the BUMP intervention: a digital intervention for the early detection of raised blood pressure in pregnancy

    Get PDF
    Background: Hypertensive disorders in pregnancy, particularly pre-eclampsia, pose a substantial health risk for both maternal and foetal outcomes. The BUMP (Blood Pressure Self-Monitoring in Pregnancy) interventions are being tested in a trial. They aim to facilitate the early detection of raised blood pressure through self-monitoring. This article outlines how the self-monitoring interventions in the BUMP trial were developed and modified using the person-based approach to promote engagement and adherence. Methods: Key behavioural challenges associated with blood pressure self-monitoring in pregnancy were identified through synthesising qualitative pilot data and existing evidence, which informed guiding principles for the development process. Social cognitive theory was identified as an appropriate theoretical framework. A testable logic model was developed to illustrate the hypothesised processes of change associated with the intervention. Iterative qualitative feedback from women and staff informed modifications to the participant materials. Results: The evidence synthesis suggested women face challenges integrating self-monitoring into their lives and that adherence is challenging at certain time points in pregnancy (for example, starting maternity leave). Intervention modification included strategies to address adherence but also focussed on modifying outcome expectancies, by providing messages explaining pre-eclampsia and outlining the potential benefits of self-monitoring. Conclusions: With an in-depth understanding of the target population, several methods and approaches to plan and develop interventions specifically relevant to pregnant women were successfully integrated, to address barriers to behaviour change while ensuring they are easy to engage with, persuasive and acceptable

    Exosomes as a tumor immune escape mechanism: possible therapeutic implications

    Get PDF
    Advances in cancer therapy have been substantial in terms of molecular understanding of disease mechanisms, however these advances have not translated into increased survival in the majority of cancer types. One unsolved problem in current cancer therapeutics is the substantial immune suppression seen in patients. Conventionally, investigations in this area have focused on antigen-nonspecific immune suppressive molecules such as cytokines and T cell apoptosis inducing molecules such as Fas ligand. More recently, studies have demonstrated nanovesicle particles termed exosomes are involved not only in stimulation but also inhibition of immunity in physiological conditions. Interestingly, exosomes secreted by cancer cells have been demonstrated to express tumor antigens, as well as immune suppressive molecules such as PD-1L and FasL. Concentrations of exosomes from plasma of cancer patients have been associated with spontaneous T cell apoptosis, which is associated in some situations with shortened survival. In this paper we place the "exosome-immune suppression" concept in perspective of other tumor immune evasion mechanisms. We conclude by discussing a novel therapeutic approach to cancer immune suppression by extracorporeal removal of exosomes using hollow fiber filtration technolog
    corecore